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1 INTRODUCTION 

The growing complexity of digital asset markets has 

brought new challenges to optimization models used in 

digital asset portfolio management. Traditionally, most 

portfolio management problems are modelled as Mixed-

Integer Programming (MIP), which provides a powerful 

method for solving discrete optimization problems. However, 

as these markets grow, MIP faces scalability and time 

complexity challenges. In response to this, recent research 

has shown that machine learning (ML) methods can be used 

in conjunction with traditional optimization algorithms to 

improve efficiency and solve more complex problems more 

effectively [1]. This paper explores hybrid approaches that 

combine machine learning models and MIP techniques to 

optimize decision-making in the context of digital asset 

management. 

2 PROBLEM DEFINITION AND 

FORMULATION 

In digital asset applications, optimization problems 

often involve selecting an optimal set of assets or transactions 

under certain constraints. These problems can naturally be 

modeled as Mixed-Integer Programs (MIPs), where decision 

variables are both continuous (e.g., proportions of 

investments) and discrete (e.g., buy/sell decisions). A typical 

example in portfolio optimization involves maximizing 

returns while minimizing risks, subject to constraints such as 

budget limits and regulatory requirements. However, solving 

such MIPs at scale, particularly in real-time trading scenarios, 

poses a significant computational burden due to the 

combinatorial nature of the problem [2]. 

In portfolio optimization, where we aim to select a 

portfolio of assets to maximize returns while minimizing risk. 

The mathematical formulation can be extended as follows: 

maximize 𝑟𝑇𝑦 −  𝜆𝑦𝑇 ∑ 𝑦 

subject to: 𝐴𝑦 ≤ 𝑏  

  ∑ 𝑦𝑗 = 1𝑚
𝑗=1  

  𝑥𝑖 ∈ {0,1}        ∀𝑖 = 1, … , 𝑛 

  𝑦𝑗 ≥ 0   ∀𝑗 = 1, … , 𝑚 

Where: 

• 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑚)𝑇  represents the proportion of 

investment in each asset. 

• 𝑟 is the vector of expected returns for each asset. 

• Σ is the covariance matrix of the asset returns, 

representing the risk associated with the portfolio. 

• λ is a risk aversion parameter that balances between 
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maximizing returns and minimizing risk. 

• 𝐴𝑦 ≤ 𝑏  represents other constraints such as 

regulatory limits or transaction costs. 

• 𝑥𝑖 ∈ {0,1}   are binary decision variables 

representing whether an asset is included in the 

portfolio (𝑥𝑖 = 1)  or not (𝑥𝑖 = 0). 

Heuristics Formulation: When using heuristics for 

approximate solutions, instead of solving the MIP exactly, we 

define a relaxed version: 

minimize 𝑓(𝑥) = 𝑐𝑇𝑥 + ϵ  

subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈  𝑅𝑛  

where ϵ is the approximation error. Heuristic methods focus 

on generating good feasible solutions quickly, even if they are 

not guaranteed to be globally optimal. 

3 LITERATURE REVIEW 

Graph based deep learning system has shown enormous 

potential in stock market trading as show in [3]. YOLO-

Based deep learning techniques have been introduced in [4]. 

Graph neural networks which show powerful abilities in 

representing complex relationships [5] extended graph based 

deep learning system. 

In asset management application for machine learning, 

it is started from using LSTM on equity or fixed income 

trading [6]. Deep learning and knowledge graph embedding 

are later used in cryptocurrency and digital asset management 

in the work of [7] and [8]. Deep learning has shown promising 

performance in the work of [9], [10] and [11]. 

Much prior research explores the optimization of deep 

neural networks and GNNs using evolutionary hyper-

heuristics, which combine different metaheuristic strategies 

to tune hyperparameters efficiently. For example, in [12], the 

author demonstrates how metaheuristics can significantly 

improve neural network performance in specific tasks, such 

as profit maximization. Bayesian optimization can be used 

together with heuristics as in [12] to further improve the 

performance. Metaheuristic optimization like [13] is used in 

many applications. [14] and [15] show that metaheuristic 

optimization is especially successful in heterogeneous 

networks. 

4 METAHEURISTICS 

Metaheuristic algorithms are high-level procedures 

designed to generate or select heuristics that provide good 

enough solutions for optimization problems. Unlike 

traditional optimization methods, which often rely on 

gradients or second-order information, metaheuristics use 

mechanisms such as exploration and exploitation to search 

through the solution space. Metaheuristics are generally 

divided into two categories: single-solution-based and 

population-based algorithms. 

4.1 SINGLE-SOLUTION-BASED METAHEURISTICS 

Single-solution-based metaheuristics like Simulated 

Annealing (SA), Tabu Search (TS), and Variable 

Neighborhood Search (VNS) can be highly effective in 

solving Mixed-Integer Programming (MIP) problems, 

especially in the context of digital asset applications where 

scalability and time constraints are significant concerns. 

Single-solution-based metaheuristics improve a single 

candidate solution iteratively. Some of the popular single-

solution metaheuristics include: 

Simulated Annealing (SA): Inspired by the annealing 

process in metallurgy, SA explores the solution space by 

accepting worse solutions with a probability that decreases 

over time. This helps the algorithm avoid local optima and 

encourages exploration of the search space. 

Tabu Search (TS): TS utilizes a memory structure (tabu 

list) to avoid revisiting recently explored solutions. This 

encourages the algorithm to explore new areas of the solution 

space, avoiding cycles. 

Variable Neighborhood Search (VNS): VNS 

systematically changes the neighborhood structure during the 

search process, allowing the algorithm to escape local optima 

by exploring progressively larger neighborhoods. 

4.2 POPULATION-BASED METAHEURISTICS 

Population-based metaheuristics maintain a population 

of candidate solutions and improve them over successive 

iterations. Some popular population-based metaheuristics 

include: 

Genetic Algorithms (GA) mimic the process of natural 

evolution, where solutions are represented as chromosomes 

and undergo crossover and mutation operations to produce 

better offspring. Selection mechanisms favor the survival of 

better solutions. 

Particle Swarm Optimization (PSO) models the 

behavior of swarms, such as birds or fish, to optimize a 

solution. Particles (candidate solutions) move through the 

solution space by updating their velocity based on their own 

experience and that of their neighbors. 

Ant Colony Optimization (ACO) is inspired by the 

behavior of ants in finding the shortest paths to food. 

Artificial ants construct solutions incrementally based on 

pheromone trails, which guide future search efforts. 

While single-solution-based metaheuristics are 

designed to iteratively refine a single candidate solution, 

population-based metaheuristics like Genetic Algorithms 

(GA) and Particle Swarm Optimization (PSO) offer a broader 

exploration of the solution space by maintaining a population 

of solutions. They might be more computationally expensive 

but can offer complementary approaches to hybrid solutions 

when combined with single-solution-based metaheuristics. 

For MIP problems in digital assets, such metaheuristics 
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can serve as a population-based initialization method for 

single-solution-based algorithms like VNS, TS, or SA. For 

example, a population-based algorithm like GA could 

provide an initial set of diverse, high-quality candidate 

solutions, which could then be refined using single-solution-

based methods. 

5 TRADITIONAL METHODOLOGY 

ASSISTED BY MACHINE 

LEARNING 

In this section, we analyze how traditional 

methodologies like Branch-and-Bound, Cutting Plane 

Generation, Heuristics for Approximate Solutions can be 

assisted by machine learning. 

5.1 BRANCH-AND-BOUND WITH MACHINE 

LEARNING 

Branch-and-bound is a classic tree-search method 

where the search space is divided, and bounds are used to 

prune parts of the search tree. ML can be used to select 

branching variables more intelligently by learning from 

strong branching or pseudo-costs, significantly reducing the 

search tree size and computation time [16]. It operates by 

systematically exploring a search tree, where each node 

represents a subproblem of the original optimization problem. 

The goal is to either find feasible solutions or prove that no 

better solution exists. The challenge, however, is that the size 

of the search tree grows exponentially with the size of the 

problem, leading to high computational costs. Machine 

learning (ML) has been introduced to assist in making key 

decisions in the B&B process. 

5.1.1 Overview of the Branch-and-Bound Algorithm 

In B&B, the original MIP problem is solved by breaking 

it down into smaller subproblems. The algorithm proceeds as 

follows: 

• Relaxation: The problem is relaxed by removing the 

integer constraints, resulting in a linear programming 

(LP) relaxation, which is easier to solve. This relaxation 

provides a lower bound for the original problem. 

• Branching: If the solution to the relaxed problem 

contains fractional values for integer variables, the 

algorithm branches by creating two new subproblems. 

These subproblems impose additional constraints, either 

fixing the integer variable to its lower or upper bound. 

• Bounding: Each subproblem is solved, and bounds 

(upper or lower) are computed for the objective function. 

If the bound of a subproblem is worse than the current 

best solution, the subproblem is pruned from the search 

tree. 

• Search Strategy: The algorithm continues branching and 

bounding until the entire search tree is explored or 

pruned. 

While B&B guarantees finding an optimal solution, it is 

computationally expensive due to the large number of nodes 

generated. Machine learning can help improve the 

performance of the B&B algorithm by guiding key decisions 

at various stages, such as branching variable selection, node 

selection, and cut generation. 

5.1.2 Machine Learning-Enhanced Branch-and-Bound 

ML can be integrated into B&B to make more 

intelligent decisions, thereby reducing the size of the search 

tree and improving the solver’s speed. The following key 

components of B&B can be enhanced with ML techniques: 

1. Branching Variable Selection: Branching variable 

selection is crucial to the performance of B&B. When the 

algorithm encounters a fractional value for an integer 

variable, it must decide which variable to branch on. 

Traditional methods like strong branching evaluate each 

potential variable by solving LP relaxations, but this can 

be computationally expensive. The machine learning-

based approaches includes: 

Imitation Learning: ML models can be trained to mimic 

strong branching by learning from historical data. The 

model predicts which variable should be branched upon, 

based on features such as variable coefficients, reduced 

costs, and dual values from the LP relaxation. Once 

trained, the model can make branching decisions much 

faster than traditional methods. 

Graph Neural Networks (GNNs): Since MIP problems 

can be represented as bipartite graphs, GNNs are used to 

capture relationships between variables and constraints. 

This allows the model to make more informed branching 

decisions by learning from the structure of the problem 

[17]. [6] also demonstrates the use of neural networks to 

capture the relationships between variables and related 

variables. We will leverage on the work of [6] to capture 

the branching variables and the possible next best 

branching choices. 

By leveraging ML, branching decisions can be made 

more efficiently, reducing the size of the B&B tree and 

computational time. 

2. Node Selection: After branching, the algorithm has 

multiple subproblems to explore, represented as nodes in 

a tree. The order in which these nodes are explored can 

significantly affect the performance of the solver. 

Traditional approaches like depth-first search (DFS) or 

best-bound first explore nodes based on simple heuristics, 

which may not always be optimal. The machine learning 

based approaches includes: 

Reinforcement Learning (RL): RL can be used to train 

an agent to select the most promising node to explore 

next. By framing the node selection problem as a Markov 

Decision Process (MDP), the RL agent learns from the 

feedback it receives during the B&B process. This allows 
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the agent to prioritize nodes that are more likely to lead 

to an optimal solution [18]. 

Supervised Learning: Like branching, ML models can be 

trained to predict which node should be explored next. 

Features of the nodes, such as bounds, depth, and 

remaining constraints, are used to make predictions. This 

method can significantly reduce the number of nodes 

explored in the search tree. 

3. Cut Generation: In the branch-and-cut method, adding 

cutting planes can tighten the LP relaxation by 

eliminating infeasible regions, thus improving the 

efficiency of B&B. However, selecting the right cuts is a 

non-trivial task, and adding too many cuts can slow down 

the solver. Machine Learning based approach includes: 

Reinforcement Learning: ML models can be trained to 

select which cuts to add at each node of the B&B tree. 

This is done by learning from the problem structure and 

previous cut decisions, allowing the solver to add only 

the most effective cuts, which leads to a faster 

convergence [19]. 

Cut Ranking: Supervised learning can be used to rank 

potential cuts based on their effectiveness in tightening 

the LP relaxation. The model is trained on features such 

as the cut’s coefficients, its effect on the objective 

function, and the number of variables affected. 

4. Heuristic Pruning: In large search trees, many nodes do 

not contribute to finding the optimal solution and can be 

pruned. However, determining which nodes to prune 

early is challenging. ML-based pruning methods predict 

whether a node is likely to lead to a feasible or optimal 

solution, enabling more aggressive pruning strategies. 

By improving decisions at key stages (branching, node 

selection, cut generation), ML helps reduce the size of the 

B&B tree, leading to faster convergence. ML models can 

learn from the problem structure and adapt strategies based 

on the specific instance being solved. This makes the solver 

more flexible and efficient across a wide range of MIP 

problems. Once trained, ML models can make decisions in 

real time, significantly reducing the computational overhead 

compared to traditional methods like strong branching or 

exhaustive node exploration.  

5.2 CUTTING PLANE GENERATION 

In the branch-and-cut approach, adding cuts improves 

the linear relaxation by tightening the feasible region. ML 

models can be trained to predict which cuts are most effective, 

thereby reducing the number of cuts required and improving 

solver performance. Techniques like reinforcement learning 

have been explored to sequentially select cutting planes 

during optimization [22]. 

Cutting planes help refine the feasible region by 

eliminating portions of the solution space that do not contain 

optimal solutions. However, generating effective cutting 

planes can be computationally expensive. Here, machine 

learning can help in two ways: learning to generate cutting 

planes and improving their selection. 

ML models can be trained to predict which cutting 

planes will likely be effective for a given problem, reducing 

the number of cuts needed to solve the problem [20]. For 

example, a model can be trained on a dataset of MIP problems 

to recognize patterns in the constraints and identify the most 

useful cutting planes. In digital asset management, cutting 

planes can be particularly useful in scenarios such as liquidity 

management, where rapid decision-making is required to 

account for transaction costs and regulatory constraints. 

Furthermore, cutting planes can be generated 

dynamically based on market conditions. For example, in a 

trading optimization problem, real-time market data can 

inform the cutting plane selection, allowing for more agile 

responses to market fluctuations. 

5.2.1 Cut Selection 

One key area where ML is applied is in the selection of 

cutting planes. When multiple candidate cuts are available, 

the ML model can rank or predict which cuts will be most 

effective at tightening the feasible region. This is often 

framed as a classification or ranking problem, where the 

model learns from features of previous cuts, such as their 

impact on the objective function, the number of variables they 

affect, and how much they tighten the bounds. For example, 

supervised learning models can be trained to score cuts based 

on their historical effectiveness, and the highest-ranked cuts 

are selected for inclusion in the model [21]. 

5.2.2 Reinforcement Learning for Sequential Cut 

Generation  

Another advanced approach is to apply reinforcement 

learning (RL) to cut generation. In this context, the process of 

generating and selecting cuts is modeled as a sequential 

decision-making problem, where the RL agent learns to 

choose cuts that minimize the overall solving time. At each 

step, the RL agent observes the current state of the LP 

relaxation (e.g., the bounds, the structure of the solution, etc.) 

and selects a cut to add. The agent receives feedback based 

on how much the chosen cut tightens the feasible region and 

improves the objective function. Over time, the RL model 

learns an optimal cut generation policy that reduces the 

number of cuts needed to solve the problem [19]. 

5.2.3 Look-Ahead Cut Selection 

A more advanced method is look-ahead cut selection, 

where ML models are used to predict the long-term impact of 

a cut. Traditionally, selecting a cut involves evaluating its 

immediate effect on the current LP relaxation. However, 

look-ahead methods aim to predict how the cut will influence 

the entire B&B tree by forecasting how much the cut will 

reduce the search space in future branches. This approach is 

often implemented using deep learning models that can 

capture complex relationships between variables, constraints, 
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and cuts, leading to more effective pruning of the search 

space [21]. 

5.2.4 Cutting Plane Reduction:  

While adding cuts improves the tightness of the 

relaxation, introducing too many cuts can increase the 

problem's complexity and slow down the solver. Machine 

learning can also be used to reduce the number of cuts by 

identifying redundant or ineffective cuts. Models can be 

trained to predict whether a cut will provide any further 

tightening of the feasible region beyond what has already 

been achieved. This allows the solver to focus on only the 

most impactful cuts, thereby balancing solution quality and 

computational efficiency. 

ML models help prioritize and select cuts that lead to 

faster convergence, reducing the overall computational time 

needed to solve MIPs. By focusing only on the most effective 

cuts, solvers can avoid the overhead associated with 

evaluating and adding unnecessary cuts. By incorporating 

data-driven insights, ML models can make cut generation 

more adaptive and tailored to the specific instance of the 

problem. This results in tighter LP relaxations, faster pruning 

of the B&B tree, and overall improvements in solver 

performance. ML allows for a more automated and less 

heuristic-driven approach to cut generation. Traditional cut 

generation methods often rely on hand-crafted rules or 

heuristics developed through years of trial and error. ML-

based methods, however, can learn these patterns from data 

and improve over time. 

5.3 HEURISTICS FOR APPROXIMATE SOLUTIONS 

Exact solutions to MIPs are often computationally 

prohibitive for large-scale problems, especially in real-time 

digital asset management. Therefore, heuristics—methods 

that provide good approximate solutions in less time—are 

widely used. Machine learning can assist in developing more 

effective heuristics by learning from historical solutions to 

predict good feasible solutions or guide the search process 

toward better regions of the solution space. 

Metaheuristic algorithms such as Genetic Algorithms 

(GA) and Simulated Annealing (SA) are often used in 

combination with MIP to find high-quality approximate 

solutions quickly. Machine learning models can further 

enhance these metaheuristics by learning from past 

optimization problems to refine the search process [22]. For 

instance, in digital asset portfolio management, ML-based 

heuristics can predict near-optimal portfolios based on 

historical market trends, reducing the need for exhaustive 

search processes. 

In addition, ML can be used to warm-start heuristics, 

providing initial solutions that are closer to optimal, thereby 

speeding up the convergence process. For example, in 

transaction cost minimization, a machine learning model can 

predict initial buy/sell decisions based on historical trade 

patterns, allowing the MIP solver to focus on refining these 

decisions rather than starting from scratch.  

Heuristics play a crucial role in solving Mixed Integer 

Programming (MIP) problems, particularly when exact 

solutions are computationally intractable for large-scale 

instances. Unlike exact methods like branch-and-bound or 

branch-and-cut, heuristics aim to quickly find high-quality, 

feasible solutions that may not be optimal but are close to the 

true optimum. These approximate methods are especially 

valuable in real-time decision-making applications where 

obtaining an optimal solution within a strict time limit is not 

feasible. Machine learning (ML) has been increasingly 

applied to enhance the efficiency of these heuristic methods 

by guiding the search process, improving solution quality, 

and reducing computation time [23]. 

Heuristics for MIP can be broadly classified into two 

categories: construction heuristics and improvement 

heuristics. 

5.3.1 Construction Heuristics 

These methods construct a feasible solution from 

scratch by iteratively making decisions about variable 

assignments. They usually follow a greedy approach by 

solving LP relaxations and rounding fractional solutions to 

integer values. Common examples include rounding 

heuristics and diving heuristics. 

1. Rounding Heuristics: When a fractional solution is 

obtained from the LP relaxation of the MIP, rounding 

heuristics adjust the fractional values to integers while 

trying to preserve feasibility. For example, simple 

rounding might round up or down to the nearest integer, 

while more sophisticated rounding schemes may 

consider constraints to avoid infeasibility. 

2. Diving Heuristics: Diving heuristics simulate a depth-

first search in the branch-and-bound tree by fixing 

variables iteratively based on the LP relaxation solution. 

At each step, the algorithm branches on a fractional 

variable and continues exploring until a feasible solution 

is found. This allows for quickly finding a solution by 

focusing on promising areas of the search space. 

5.3.2 Improvement Heuristics 

 These methods start with an initial feasible solution and 

attempt to improve it through local search techniques. The 

goal is to explore the neighborhood of the current solution to 

find a better one without fully solving the MIP. Examples 

include large neighborhood search (LNS) and feasibility 

pump. 

Large Neighborhood Search (LNS): LNS begins with a 

feasible solution and systematically explores a large 

neighborhood around it by solving subproblems. The search 

alternates between destroying parts of the current solution 

(removing some variables) and repairing it by optimizing 

over the reduced problem. The key challenge in LNS is 

defining an effective neighborhood, which ML models can 

address by learning which parts of the solution to destroy and 
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repair. ML-enhanced LNS has shown to be highly effective, 

especially in large-scale MIP instances where the problem is 

too complex to solve directly [24]. 

Feasibility Pump: The feasibility pump (FP) is an 

iterative heuristic designed to find feasible integer solutions 

for MIPs. It alternates between solving the LP relaxation (to 

obtain fractional solutions) and rounding those solutions to 

integers while projecting them back into the feasible region. 

This process continues until a feasible integer solution is 

found or the maximum number of iterations is reached. ML 

can improve the performance of FP by predicting better 

rounding or projection strategies based on the structure of the 

problem [25]. 

5.3.3 Machine Learning for Heuristic Enhancement 

ML techniques have been employed to enhance both 

construction and improvement heuristics in MIPs. By 

learning from historical data or during the optimization 

process itself, ML can make the search process more efficient 

and adaptive. 

Learning-Based Variable Fixing: In diving heuristics 

and rounding approaches, ML models can predict which 

variables should be fixed early in the process to steer the 

solution towards feasibility faster. For example, a model can 

be trained to recognize patterns in the problem structure that 

suggest which fractional variables, when rounded, are more 

likely to lead to a feasible solution. This reduces the trial-and-

error process of standard heuristics, leading to faster 

convergence. 

Reinforcement Learning for Local Search: 

Reinforcement learning (RL) can be applied to guide the 

search process in improvement heuristics like LNS. By 

framing the neighborhood selection as a sequential decision-

making problem, an RL agent learns which neighborhoods to 

explore or how to "destroy" and "repair" parts of the solution 

to maximize the chance of finding a better solution. Over time, 

the RL agent has improved its strategy, leading to more 

effective local search and faster improvements in solution 

quality. 

Feasibility Prediction in Feasibility Pump: ML models 

can be trained to predict whether a given solution is likely to 

be feasible after rounding, reducing the number of iterations 

in the feasibility pump algorithm. This is particularly useful 

for hard-to-solve instances where traditional FP might 

struggle to find a feasible solution within the time limit. By 

learning from past problem instances, the model can guide the 

FP algorithm to explore more promising regions of the 

solution space. 

Adaptive Neighborhood Selection in LNS: In large 

neighborhood search, defining the neighborhood is critical 

for the performance of the algorithm. ML can dynamically 

adjust the size or composition of the neighborhood based on 

the problem’s structure or the solution's quality at each 

iteration. For instance, if a certain set of variables consistently 

leads to better solutions when perturbed, the ML model can 

prioritize those variables for future neighborhood definitions. 

This results in a more adaptive and efficient search process, 

leading to faster convergence on near-optimal solutions. 

6 GRAPH NEURAL NETWORK FOR 

MIP IN DIGITAL ASSET 

MANAGEMENT 

Machine learning techniques can predict certain aspects 

of the solution process, such as variable importance, 

branching strategies, or even feasible regions of the solution 

space, thus reducing the search complexity [26]. Machine 

learning can assist MIP solving in various ways. For instance, 

Additionally, supervised learning models can be employed to 

predict which constraints are likely to be active or which 

variables are crucial for optimality [27]. In digital asset 

applications, such models could be trained on historical 

trading data, allowing the solver to focus on regions of the 

solution space that have historically yielded profitable 

decisions. 

Graph-based methods, particularly Graph Neural 

Networks (GNNs), have gained traction in MIP due to their 

ability to capture the structural properties of optimization 

problems. In digital asset management, the relationships 

between assets, transactions, and constraints can be naturally 

represented as graphs [8]. GNNs can be used to predict the 

impact of different variables on the optimization process, 

improving solver efficiency. For example, by embedding a 

MIP as a graph, GNNs can predict variable importance, 

guiding the solver towards more efficient solutions [28]. 

6.1 MODELING DIGITAL ASSET PORTFOLIOS AS 

GRAPHS 

In digital asset management, portfolios consist of 

multiple assets (e.g., cryptocurrencies or stocks) with 

intricate relationships influenced by market conditions, 

historical price correlations, and trading constraints. These 

relationships can be encoded into a graph structure where 

nodes represent individual assets or asset classes. Edges 

represent relationships between assets, such as correlations, 

trading pairs, or constraints like transaction costs or liquidity 

limits. The algorithm we introduced here will first build some 

contrastive pairs as introduced in [7] to begin with. 

For instance, if two assets are highly correlated, there 

would be a stronger edge between their nodes. Similarly, 

assets that are frequently traded together or share liquidity 

pools might be connected through a higher-weight edge. Such 

graph representations allow the MIP problem to capture the 

inherent structure of the financial market. 

6.2 GNN ARCHITECTURE FOR MIP PROBLEMS 

GNNs operate by aggregating information from a 

node’s neighbors in the graph, allowing them to learn 

representations of the assets that account for their 
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interdependencies. This is particularly useful in MIP because 

it enables the solver to understand how changes in one asset’s 

allocation (represented as a decision variable in the MIP) 

affect the others. The typical GNN process includes the 

following steps: 

 

1. Node Embedding: Each node (asset) is assigned an initial 

feature vector based on relevant financial metrics, such 

as historical returns, volatility, or liquidity. 

2. Message Passing: GNNs update node embeddings by 

passing messages between neighboring nodes. This step 

aggregates information from the neighbors of each asset, 

allowing the model to capture the dependencies between 

assets. 

3. Output Prediction: The final node embeddings are used 

to predict variables important for solving the MIP 

problem, such as the likelihood that an asset should be 

included in the optimal portfolio, or the importance of 

specific constraints. GNNs can predict the impact of 

individual assets or asset interactions on the optimization 

objective, guiding the solver towards more informed 

decisions. 

6.3 VARIABLE IMPORTANCE PREDICTION FOR 

MIP 

One of the primary benefits of using GNNs in MIP for 

digital asset management is their ability to predict variable 

importance. In an MIP problem, determining which variables 

(e.g., asset allocations, transaction decisions) are most critical 

to the objective function is crucial for efficient optimization. 

GNNs, through their ability to model asset relationships, can 

predict: 

1. Which assets are pivotal to the portfolio’s overall 

performance: For instance, GNNs can highlight that 

certain highly connected asset (those with many strong 

edges to other assets) may play a more significant role in 

risk reduction or return maximization. 

2. How changes in one asset's allocation impact others: By 

examining the learned graph structure, GNNs can guide 

the solver in making changes that have a cascading 

positive effect on the entire portfolio. 

For example, if a certain asset pair (nodes) is highly 

correlated and tends to move together, the GNN might predict 

that reducing the allocation in one of these assets will have a 

similar impact to reducing it in the other, making it redundant 

to optimize both simultaneously. This insight allows the MIP 

solver to focus on the more influential variables, reducing 

computational complexity. 

6.4 GUIDING THE SOLVER FOR MORE EFFICIENT 

SOLUTIONS 

Traditional MIP solvers like Branch-and-Bound and 

Cutting Plane methods rely on systematic exploration of 

feasible regions and constraint generation, often leading to 

high computational costs. By incorporating GNNs, the solver 

can be guided towards more promising regions of the solution 

space. Specifically, GNNs can: 

1. Prioritize variable branching: In the Branch-and-Bound 

process, GNNs can help determine which variables to 

branch on by predicting their importance. By focusing on 

the most critical variables (e.g., assets that are central in 

the graph or have high edge weights), the solver can 

reduce the number of branches needed to find the optimal 

solution. 

2. Efficient constraint relaxation: In scenarios where the 

MIP is too complex, GNNs can suggest which 

constraints (e.g., transaction costs or liquidity limits) can 

be relaxed or should be strictly enforced. This allows the 

solver to relax less important constraints, solving a 

simpler problem that can still provide a near-optimal 

solution. 

3. Inform heuristic generation: Heuristics like Simulated 

Annealing or Tabu Search often rely on randomized 

moves in the solution space. By incorporating the 

predictions from a GNN, these heuristics can be guided 

to make more informed decisions about which variables 

to tweak. For example, GNNs could suggest which assets 

should be prioritized for allocation changes, improving 

the effectiveness of the heuristic search. 

6.5 DYNAMIC AND REAL-TIME APPLICATION 

In digital asset management, market conditions change 

rapidly, and an asset's importance may shift due to sudden 

price fluctuations or liquidity changes. GNNs can be 

particularly valuable in real-time applications, as they can be 

trained to capture dynamic relationships between assets and 

adjust predictions accordingly. For instance: 

1. Real-time Portfolio Rebalancing: By constantly updating 

the graph structure based on new market data, GNNs can 

inform the MIP solver about changes in asset correlations, 

volatility, or liquidity constraints. This allows the solver 

to adjust the portfolio in real-time, making it more 

responsive to market shifts. 

2. Transaction Scheduling: GNNs can help optimize the 

timing of transactions by predicting how asset prices and 

correlations will evolve over time, enabling the solver to 

make smarter buy/sell decisions that minimize costs and 

maximize returns. 

6.6 HYBRID MIP-GNN APPROACHES 

A promising approach in solving large-scale MIP 

problems is to integrate GNNs into traditional optimization 

frameworks. In hybrid MIP-GNN approaches: The MIP 

problem is first embedded as a graph where each variable and 

constraint are represented as a node or edge. GNNs are used 

to preprocess the problem, predicting variable and constraint 
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importance. The predictions from the GNN are then fed into 

traditional solvers like Branch-and-Bound, Cutting Plane, or 

metaheuristic solvers (e.g., Simulated Annealing or Tabu 

Search) to guide the solution process.  

7 RESULT ANALYSIS 

We evaluate the machine learning assisted branch-and-

bound (Section 5.1), cutting plane generation (Section 5.2), 

heuristics for approximate solution (Section 5.3), and hybrid 

GNN-MIP (Section 6.6) with our benchmark digital asset 

data sets. The data sets are provided by our data vendor for 

digital asset portfolio management. We have also constrained 

the solution time to 3 minutes, so traditional branch-and-

bound, cutting plane generation, approximate solution and 

GNN-MIP may not reach their optimal solution with the time 

constraint. 

 

FIGURE 1. BRANCH AND BOUND 

For branch-and-bound, the machine learning assisted 

solution (as shown in Figure 1) has better solutions for 32% 

of all the cases, while traditional one only wins for 18.6% of 

all cases. The machine learning assisted branching utilizes 

algorithm introduced in [6], and hence yield similar results. 

When comparing the performance for the cutting plane 

generation scenarios (as shown in Figure 2), machine learning 

assisted approach wins in 45.3% of all cases, while traditional 

ones win in 26.5% of all cases. By borrowing the knowledge 

graph embedding techniques from [8], the few shots-learning 

has the higher chance to bring better result within the 3 

minutes time windows. 

 

FIGURE 2. CUTTING PLANES GENERATION 

 

FIGURE 3. APPROXIMATE SOLUTION 

In term of approximate solutions (as shown in Figure 3), 

machine learning assisted solution get better results in 48.9% 

of all the cases, while traditional method only triumphs in 2.1% 

of all the cases. This is due to traditional heuristics approach 

method usually running very slow and may stuck at local 

optimal solution within the time-window. ML assisted 

solution can always get solution within the 3 minutes time-

window while the traditional approach may not reach the 

optimal in this time frame. 

Finally, we compare the hybrid GNN-MIP approach 

with the traditional MIP approach. The hybrid approach 

achieves better results in 35% of all cases, while they are on-

par in 53.5% of all the cases, traditional MIP only gets better 

results in 11.8% of all cases. 

 

FIGURE 4. GNN MIP 

8 CONCLUSION 

In this paper, we proposed a few hybrid approaches that 

integrate machine learning techniques with traditional Mixed 

Integer Programming (MIP) to tackle optimization problems, 

specifically within the context of digital asset management. 

By leveraging a dataset provided by our data vendor, which 

contains real-world instances of asset allocation, risk 

management, and portfolio optimization, we demonstrated 

the viability of our method in handling large-scale, complex 
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MIP cases. The hybrid model, combining the rigor of MIP 

and the predictive power of machine learning, offered 

significant improvements in solution quality and 

computational efficiency compared to traditional methods. 

Specifically, our approach enabled faster convergence to 

optimal or near-optimal solutions for a range of digital asset 

management scenarios, including asset rebalancing and 

pricing strategies. 

Our results suggest that the integration of machine 

learning into traditional optimization frameworks can provide 

robust solutions to problems in digital asset management, 

where the volume of data and the dynamic nature of assets 

demand both accuracy and speed. Furthermore, the insights 

gained from the digital asset dataset underline the potential of 

machine learning in enhancing decision-making processes in 

financial domains. Future work could extend this hybrid 

framework to other areas of financial services, as well as 

explore the incorporation of more advanced learning models 

to further boost performance. 
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