
Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 41

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

Hybrid Mixed Integer Programming with Machine

Learning for Digital Asset Management

EL MEHDAOUI, Youcef 1*

1 Coinbase Research, Canada

* EL MEHDAOUI, Youcef is the corresponding author, E-mail: youcefelmehdaoui@outlook.com

Abstract: Solving Mixed Integer Programming (MIP) problems is critical for numerous applications in digital asset

management. Traditional solvers, which rely on techniques like branch-and-bound and branch-and-cut, face computational

challenges when dealing with large-scale and complex problem instances. Recent advances in machine learning (ML) have

introduced new approaches to enhance these traditional solvers by optimizing key decision-making processes such as

branching, cut generation, and heuristic selection. In this paper, we examine hybrid methods that combine ML with classical

MIP methodologies, leveraging supervised learning, reinforcement learning, and graph neural networks to improve solver

efficiency and scalability. These hybrid methods significantly reduce computational overhead by making smarter decisions

during the optimization process, resulting in faster convergence and higher-quality solutions. We also discuss the challenges of

generalization and integration of ML models with existing solvers and propose future research directions to further advance

this field.

Keywords: Mixed Integer Programming, Machine Learning, Branch-and-Bound, Cutting Planes, Heuristics, Optimization,

Reinforcement Learning, Graph Neural Network, Simulated Annealing.

DOI: https://doi.org/10.5281/zenodo.13909877 ARK: https://n2t.net/ark:/40704/AJNS.v1n1a07

1 INTRODUCTION

The growing complexity of digital asset markets has

brought new challenges to optimization models used in

digital asset portfolio management. Traditionally, most

portfolio management problems are modelled as Mixed-

Integer Programming (MIP), which provides a powerful

method for solving discrete optimization problems. However,

as these markets grow, MIP faces scalability and time

complexity challenges. In response to this, recent research

has shown that machine learning (ML) methods can be used

in conjunction with traditional optimization algorithms to

improve efficiency and solve more complex problems more

effectively [1]. This paper explores hybrid approaches that

combine machine learning models and MIP techniques to

optimize decision-making in the context of digital asset

management.

2 PROBLEM DEFINITION AND

FORMULATION

In digital asset applications, optimization problems

often involve selecting an optimal set of assets or transactions

under certain constraints. These problems can naturally be

modeled as Mixed-Integer Programs (MIPs), where decision

variables are both continuous (e.g., proportions of

investments) and discrete (e.g., buy/sell decisions). A typical

example in portfolio optimization involves maximizing

returns while minimizing risks, subject to constraints such as

budget limits and regulatory requirements. However, solving

such MIPs at scale, particularly in real-time trading scenarios,

poses a significant computational burden due to the

combinatorial nature of the problem [2].

In portfolio optimization, where we aim to select a

portfolio of assets to maximize returns while minimizing risk.

The mathematical formulation can be extended as follows:

maximize 𝑟𝑇𝑦 − 𝜆𝑦𝑇 ∑ 𝑦

subject to: 𝐴𝑦 ≤ 𝑏

 ∑ 𝑦𝑗 = 1𝑚
𝑗=1

 𝑥𝑖 ∈ {0,1} ∀𝑖 = 1, … , 𝑛

 𝑦𝑗 ≥ 0 ∀𝑗 = 1, … , 𝑚

Where:

• 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑚)𝑇 represents the proportion of

investment in each asset.

• 𝑟 is the vector of expected returns for each asset.

• Σ is the covariance matrix of the asset returns,

representing the risk associated with the portfolio.

• λ is a risk aversion parameter that balances between

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 42

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

maximizing returns and minimizing risk.

• 𝐴𝑦 ≤ 𝑏 represents other constraints such as

regulatory limits or transaction costs.

• 𝑥𝑖 ∈ {0,1} are binary decision variables

representing whether an asset is included in the

portfolio (𝑥𝑖 = 1) or not (𝑥𝑖 = 0).

Heuristics Formulation: When using heuristics for

approximate solutions, instead of solving the MIP exactly, we

define a relaxed version:

minimize 𝑓(𝑥) = 𝑐𝑇𝑥 + ϵ

subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑅𝑛

where ϵ is the approximation error. Heuristic methods focus

on generating good feasible solutions quickly, even if they are

not guaranteed to be globally optimal.

3 LITERATURE REVIEW

Graph based deep learning system has shown enormous

potential in stock market trading as show in [3]. YOLO-

Based deep learning techniques have been introduced in [4].

Graph neural networks which show powerful abilities in

representing complex relationships [5] extended graph based

deep learning system.

In asset management application for machine learning,

it is started from using LSTM on equity or fixed income

trading [6]. Deep learning and knowledge graph embedding

are later used in cryptocurrency and digital asset management

in the work of [7] and [8]. Deep learning has shown promising

performance in the work of [9], [10] and [11].

Much prior research explores the optimization of deep

neural networks and GNNs using evolutionary hyper-

heuristics, which combine different metaheuristic strategies

to tune hyperparameters efficiently. For example, in [12], the

author demonstrates how metaheuristics can significantly

improve neural network performance in specific tasks, such

as profit maximization. Bayesian optimization can be used

together with heuristics as in [12] to further improve the

performance. Metaheuristic optimization like [13] is used in

many applications. [14] and [15] show that metaheuristic

optimization is especially successful in heterogeneous

networks.

4 METAHEURISTICS

Metaheuristic algorithms are high-level procedures

designed to generate or select heuristics that provide good

enough solutions for optimization problems. Unlike

traditional optimization methods, which often rely on

gradients or second-order information, metaheuristics use

mechanisms such as exploration and exploitation to search

through the solution space. Metaheuristics are generally

divided into two categories: single-solution-based and

population-based algorithms.

4.1 SINGLE-SOLUTION-BASED METAHEURISTICS

Single-solution-based metaheuristics like Simulated

Annealing (SA), Tabu Search (TS), and Variable

Neighborhood Search (VNS) can be highly effective in

solving Mixed-Integer Programming (MIP) problems,

especially in the context of digital asset applications where

scalability and time constraints are significant concerns.

Single-solution-based metaheuristics improve a single

candidate solution iteratively. Some of the popular single-

solution metaheuristics include:

Simulated Annealing (SA): Inspired by the annealing

process in metallurgy, SA explores the solution space by

accepting worse solutions with a probability that decreases

over time. This helps the algorithm avoid local optima and

encourages exploration of the search space.

Tabu Search (TS): TS utilizes a memory structure (tabu

list) to avoid revisiting recently explored solutions. This

encourages the algorithm to explore new areas of the solution

space, avoiding cycles.

Variable Neighborhood Search (VNS): VNS

systematically changes the neighborhood structure during the

search process, allowing the algorithm to escape local optima

by exploring progressively larger neighborhoods.

4.2 POPULATION-BASED METAHEURISTICS

Population-based metaheuristics maintain a population

of candidate solutions and improve them over successive

iterations. Some popular population-based metaheuristics

include:

Genetic Algorithms (GA) mimic the process of natural

evolution, where solutions are represented as chromosomes

and undergo crossover and mutation operations to produce

better offspring. Selection mechanisms favor the survival of

better solutions.

Particle Swarm Optimization (PSO) models the

behavior of swarms, such as birds or fish, to optimize a

solution. Particles (candidate solutions) move through the

solution space by updating their velocity based on their own

experience and that of their neighbors.

Ant Colony Optimization (ACO) is inspired by the

behavior of ants in finding the shortest paths to food.

Artificial ants construct solutions incrementally based on

pheromone trails, which guide future search efforts.

While single-solution-based metaheuristics are

designed to iteratively refine a single candidate solution,

population-based metaheuristics like Genetic Algorithms

(GA) and Particle Swarm Optimization (PSO) offer a broader

exploration of the solution space by maintaining a population

of solutions. They might be more computationally expensive

but can offer complementary approaches to hybrid solutions

when combined with single-solution-based metaheuristics.

For MIP problems in digital assets, such metaheuristics

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 43

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

can serve as a population-based initialization method for

single-solution-based algorithms like VNS, TS, or SA. For

example, a population-based algorithm like GA could

provide an initial set of diverse, high-quality candidate

solutions, which could then be refined using single-solution-

based methods.

5 TRADITIONAL METHODOLOGY

ASSISTED BY MACHINE

LEARNING

In this section, we analyze how traditional

methodologies like Branch-and-Bound, Cutting Plane

Generation, Heuristics for Approximate Solutions can be

assisted by machine learning.

5.1 BRANCH-AND-BOUND WITH MACHINE

LEARNING

Branch-and-bound is a classic tree-search method

where the search space is divided, and bounds are used to

prune parts of the search tree. ML can be used to select

branching variables more intelligently by learning from

strong branching or pseudo-costs, significantly reducing the

search tree size and computation time [16]. It operates by

systematically exploring a search tree, where each node

represents a subproblem of the original optimization problem.

The goal is to either find feasible solutions or prove that no

better solution exists. The challenge, however, is that the size

of the search tree grows exponentially with the size of the

problem, leading to high computational costs. Machine

learning (ML) has been introduced to assist in making key

decisions in the B&B process.

5.1.1 Overview of the Branch-and-Bound Algorithm

In B&B, the original MIP problem is solved by breaking

it down into smaller subproblems. The algorithm proceeds as

follows:

• Relaxation: The problem is relaxed by removing the

integer constraints, resulting in a linear programming

(LP) relaxation, which is easier to solve. This relaxation

provides a lower bound for the original problem.

• Branching: If the solution to the relaxed problem

contains fractional values for integer variables, the

algorithm branches by creating two new subproblems.

These subproblems impose additional constraints, either

fixing the integer variable to its lower or upper bound.

• Bounding: Each subproblem is solved, and bounds

(upper or lower) are computed for the objective function.

If the bound of a subproblem is worse than the current

best solution, the subproblem is pruned from the search

tree.

• Search Strategy: The algorithm continues branching and

bounding until the entire search tree is explored or

pruned.

While B&B guarantees finding an optimal solution, it is

computationally expensive due to the large number of nodes

generated. Machine learning can help improve the

performance of the B&B algorithm by guiding key decisions

at various stages, such as branching variable selection, node

selection, and cut generation.

5.1.2 Machine Learning-Enhanced Branch-and-Bound

ML can be integrated into B&B to make more

intelligent decisions, thereby reducing the size of the search

tree and improving the solver’s speed. The following key

components of B&B can be enhanced with ML techniques:

1. Branching Variable Selection: Branching variable

selection is crucial to the performance of B&B. When the

algorithm encounters a fractional value for an integer

variable, it must decide which variable to branch on.

Traditional methods like strong branching evaluate each

potential variable by solving LP relaxations, but this can

be computationally expensive. The machine learning-

based approaches includes:

Imitation Learning: ML models can be trained to mimic

strong branching by learning from historical data. The

model predicts which variable should be branched upon,

based on features such as variable coefficients, reduced

costs, and dual values from the LP relaxation. Once

trained, the model can make branching decisions much

faster than traditional methods.

Graph Neural Networks (GNNs): Since MIP problems

can be represented as bipartite graphs, GNNs are used to

capture relationships between variables and constraints.

This allows the model to make more informed branching

decisions by learning from the structure of the problem

[17]. [6] also demonstrates the use of neural networks to

capture the relationships between variables and related

variables. We will leverage on the work of [6] to capture

the branching variables and the possible next best

branching choices.

By leveraging ML, branching decisions can be made

more efficiently, reducing the size of the B&B tree and

computational time.

2. Node Selection: After branching, the algorithm has

multiple subproblems to explore, represented as nodes in

a tree. The order in which these nodes are explored can

significantly affect the performance of the solver.

Traditional approaches like depth-first search (DFS) or

best-bound first explore nodes based on simple heuristics,

which may not always be optimal. The machine learning

based approaches includes:

Reinforcement Learning (RL): RL can be used to train

an agent to select the most promising node to explore

next. By framing the node selection problem as a Markov

Decision Process (MDP), the RL agent learns from the

feedback it receives during the B&B process. This allows

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 44

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

the agent to prioritize nodes that are more likely to lead

to an optimal solution [18].

Supervised Learning: Like branching, ML models can be

trained to predict which node should be explored next.

Features of the nodes, such as bounds, depth, and

remaining constraints, are used to make predictions. This

method can significantly reduce the number of nodes

explored in the search tree.

3. Cut Generation: In the branch-and-cut method, adding

cutting planes can tighten the LP relaxation by

eliminating infeasible regions, thus improving the

efficiency of B&B. However, selecting the right cuts is a

non-trivial task, and adding too many cuts can slow down

the solver. Machine Learning based approach includes:

Reinforcement Learning: ML models can be trained to

select which cuts to add at each node of the B&B tree.

This is done by learning from the problem structure and

previous cut decisions, allowing the solver to add only

the most effective cuts, which leads to a faster

convergence [19].

Cut Ranking: Supervised learning can be used to rank

potential cuts based on their effectiveness in tightening

the LP relaxation. The model is trained on features such

as the cut’s coefficients, its effect on the objective

function, and the number of variables affected.

4. Heuristic Pruning: In large search trees, many nodes do

not contribute to finding the optimal solution and can be

pruned. However, determining which nodes to prune

early is challenging. ML-based pruning methods predict

whether a node is likely to lead to a feasible or optimal

solution, enabling more aggressive pruning strategies.

By improving decisions at key stages (branching, node

selection, cut generation), ML helps reduce the size of the

B&B tree, leading to faster convergence. ML models can

learn from the problem structure and adapt strategies based

on the specific instance being solved. This makes the solver

more flexible and efficient across a wide range of MIP

problems. Once trained, ML models can make decisions in

real time, significantly reducing the computational overhead

compared to traditional methods like strong branching or

exhaustive node exploration.

5.2 CUTTING PLANE GENERATION

In the branch-and-cut approach, adding cuts improves

the linear relaxation by tightening the feasible region. ML

models can be trained to predict which cuts are most effective,

thereby reducing the number of cuts required and improving

solver performance. Techniques like reinforcement learning

have been explored to sequentially select cutting planes

during optimization [22].

Cutting planes help refine the feasible region by

eliminating portions of the solution space that do not contain

optimal solutions. However, generating effective cutting

planes can be computationally expensive. Here, machine

learning can help in two ways: learning to generate cutting

planes and improving their selection.

ML models can be trained to predict which cutting

planes will likely be effective for a given problem, reducing

the number of cuts needed to solve the problem [20]. For

example, a model can be trained on a dataset of MIP problems

to recognize patterns in the constraints and identify the most

useful cutting planes. In digital asset management, cutting

planes can be particularly useful in scenarios such as liquidity

management, where rapid decision-making is required to

account for transaction costs and regulatory constraints.

Furthermore, cutting planes can be generated

dynamically based on market conditions. For example, in a

trading optimization problem, real-time market data can

inform the cutting plane selection, allowing for more agile

responses to market fluctuations.

5.2.1 Cut Selection

One key area where ML is applied is in the selection of

cutting planes. When multiple candidate cuts are available,

the ML model can rank or predict which cuts will be most

effective at tightening the feasible region. This is often

framed as a classification or ranking problem, where the

model learns from features of previous cuts, such as their

impact on the objective function, the number of variables they

affect, and how much they tighten the bounds. For example,

supervised learning models can be trained to score cuts based

on their historical effectiveness, and the highest-ranked cuts

are selected for inclusion in the model [21].

5.2.2 Reinforcement Learning for Sequential Cut

Generation

Another advanced approach is to apply reinforcement

learning (RL) to cut generation. In this context, the process of

generating and selecting cuts is modeled as a sequential

decision-making problem, where the RL agent learns to

choose cuts that minimize the overall solving time. At each

step, the RL agent observes the current state of the LP

relaxation (e.g., the bounds, the structure of the solution, etc.)

and selects a cut to add. The agent receives feedback based

on how much the chosen cut tightens the feasible region and

improves the objective function. Over time, the RL model

learns an optimal cut generation policy that reduces the

number of cuts needed to solve the problem [19].

5.2.3 Look-Ahead Cut Selection

A more advanced method is look-ahead cut selection,

where ML models are used to predict the long-term impact of

a cut. Traditionally, selecting a cut involves evaluating its

immediate effect on the current LP relaxation. However,

look-ahead methods aim to predict how the cut will influence

the entire B&B tree by forecasting how much the cut will

reduce the search space in future branches. This approach is

often implemented using deep learning models that can

capture complex relationships between variables, constraints,

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 45

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

and cuts, leading to more effective pruning of the search

space [21].

5.2.4 Cutting Plane Reduction:

While adding cuts improves the tightness of the

relaxation, introducing too many cuts can increase the

problem's complexity and slow down the solver. Machine

learning can also be used to reduce the number of cuts by

identifying redundant or ineffective cuts. Models can be

trained to predict whether a cut will provide any further

tightening of the feasible region beyond what has already

been achieved. This allows the solver to focus on only the

most impactful cuts, thereby balancing solution quality and

computational efficiency.

ML models help prioritize and select cuts that lead to

faster convergence, reducing the overall computational time

needed to solve MIPs. By focusing only on the most effective

cuts, solvers can avoid the overhead associated with

evaluating and adding unnecessary cuts. By incorporating

data-driven insights, ML models can make cut generation

more adaptive and tailored to the specific instance of the

problem. This results in tighter LP relaxations, faster pruning

of the B&B tree, and overall improvements in solver

performance. ML allows for a more automated and less

heuristic-driven approach to cut generation. Traditional cut

generation methods often rely on hand-crafted rules or

heuristics developed through years of trial and error. ML-

based methods, however, can learn these patterns from data

and improve over time.

5.3 HEURISTICS FOR APPROXIMATE SOLUTIONS

Exact solutions to MIPs are often computationally

prohibitive for large-scale problems, especially in real-time

digital asset management. Therefore, heuristics—methods

that provide good approximate solutions in less time—are

widely used. Machine learning can assist in developing more

effective heuristics by learning from historical solutions to

predict good feasible solutions or guide the search process

toward better regions of the solution space.

Metaheuristic algorithms such as Genetic Algorithms

(GA) and Simulated Annealing (SA) are often used in

combination with MIP to find high-quality approximate

solutions quickly. Machine learning models can further

enhance these metaheuristics by learning from past

optimization problems to refine the search process [22]. For

instance, in digital asset portfolio management, ML-based

heuristics can predict near-optimal portfolios based on

historical market trends, reducing the need for exhaustive

search processes.

In addition, ML can be used to warm-start heuristics,

providing initial solutions that are closer to optimal, thereby

speeding up the convergence process. For example, in

transaction cost minimization, a machine learning model can

predict initial buy/sell decisions based on historical trade

patterns, allowing the MIP solver to focus on refining these

decisions rather than starting from scratch.

Heuristics play a crucial role in solving Mixed Integer

Programming (MIP) problems, particularly when exact

solutions are computationally intractable for large-scale

instances. Unlike exact methods like branch-and-bound or

branch-and-cut, heuristics aim to quickly find high-quality,

feasible solutions that may not be optimal but are close to the

true optimum. These approximate methods are especially

valuable in real-time decision-making applications where

obtaining an optimal solution within a strict time limit is not

feasible. Machine learning (ML) has been increasingly

applied to enhance the efficiency of these heuristic methods

by guiding the search process, improving solution quality,

and reducing computation time [23].

Heuristics for MIP can be broadly classified into two

categories: construction heuristics and improvement

heuristics.

5.3.1 Construction Heuristics

These methods construct a feasible solution from

scratch by iteratively making decisions about variable

assignments. They usually follow a greedy approach by

solving LP relaxations and rounding fractional solutions to

integer values. Common examples include rounding

heuristics and diving heuristics.

1. Rounding Heuristics: When a fractional solution is

obtained from the LP relaxation of the MIP, rounding

heuristics adjust the fractional values to integers while

trying to preserve feasibility. For example, simple

rounding might round up or down to the nearest integer,

while more sophisticated rounding schemes may

consider constraints to avoid infeasibility.

2. Diving Heuristics: Diving heuristics simulate a depth-

first search in the branch-and-bound tree by fixing

variables iteratively based on the LP relaxation solution.

At each step, the algorithm branches on a fractional

variable and continues exploring until a feasible solution

is found. This allows for quickly finding a solution by

focusing on promising areas of the search space.

5.3.2 Improvement Heuristics

 These methods start with an initial feasible solution and

attempt to improve it through local search techniques. The

goal is to explore the neighborhood of the current solution to

find a better one without fully solving the MIP. Examples

include large neighborhood search (LNS) and feasibility

pump.

Large Neighborhood Search (LNS): LNS begins with a

feasible solution and systematically explores a large

neighborhood around it by solving subproblems. The search

alternates between destroying parts of the current solution

(removing some variables) and repairing it by optimizing

over the reduced problem. The key challenge in LNS is

defining an effective neighborhood, which ML models can

address by learning which parts of the solution to destroy and

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 46

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

repair. ML-enhanced LNS has shown to be highly effective,

especially in large-scale MIP instances where the problem is

too complex to solve directly [24].

Feasibility Pump: The feasibility pump (FP) is an

iterative heuristic designed to find feasible integer solutions

for MIPs. It alternates between solving the LP relaxation (to

obtain fractional solutions) and rounding those solutions to

integers while projecting them back into the feasible region.

This process continues until a feasible integer solution is

found or the maximum number of iterations is reached. ML

can improve the performance of FP by predicting better

rounding or projection strategies based on the structure of the

problem [25].

5.3.3 Machine Learning for Heuristic Enhancement

ML techniques have been employed to enhance both

construction and improvement heuristics in MIPs. By

learning from historical data or during the optimization

process itself, ML can make the search process more efficient

and adaptive.

Learning-Based Variable Fixing: In diving heuristics

and rounding approaches, ML models can predict which

variables should be fixed early in the process to steer the

solution towards feasibility faster. For example, a model can

be trained to recognize patterns in the problem structure that

suggest which fractional variables, when rounded, are more

likely to lead to a feasible solution. This reduces the trial-and-

error process of standard heuristics, leading to faster

convergence.

Reinforcement Learning for Local Search:

Reinforcement learning (RL) can be applied to guide the

search process in improvement heuristics like LNS. By

framing the neighborhood selection as a sequential decision-

making problem, an RL agent learns which neighborhoods to

explore or how to "destroy" and "repair" parts of the solution

to maximize the chance of finding a better solution. Over time,

the RL agent has improved its strategy, leading to more

effective local search and faster improvements in solution

quality.

Feasibility Prediction in Feasibility Pump: ML models

can be trained to predict whether a given solution is likely to

be feasible after rounding, reducing the number of iterations

in the feasibility pump algorithm. This is particularly useful

for hard-to-solve instances where traditional FP might

struggle to find a feasible solution within the time limit. By

learning from past problem instances, the model can guide the

FP algorithm to explore more promising regions of the

solution space.

Adaptive Neighborhood Selection in LNS: In large

neighborhood search, defining the neighborhood is critical

for the performance of the algorithm. ML can dynamically

adjust the size or composition of the neighborhood based on

the problem’s structure or the solution's quality at each

iteration. For instance, if a certain set of variables consistently

leads to better solutions when perturbed, the ML model can

prioritize those variables for future neighborhood definitions.

This results in a more adaptive and efficient search process,

leading to faster convergence on near-optimal solutions.

6 GRAPH NEURAL NETWORK FOR

MIP IN DIGITAL ASSET

MANAGEMENT

Machine learning techniques can predict certain aspects

of the solution process, such as variable importance,

branching strategies, or even feasible regions of the solution

space, thus reducing the search complexity [26]. Machine

learning can assist MIP solving in various ways. For instance,

Additionally, supervised learning models can be employed to

predict which constraints are likely to be active or which

variables are crucial for optimality [27]. In digital asset

applications, such models could be trained on historical

trading data, allowing the solver to focus on regions of the

solution space that have historically yielded profitable

decisions.

Graph-based methods, particularly Graph Neural

Networks (GNNs), have gained traction in MIP due to their

ability to capture the structural properties of optimization

problems. In digital asset management, the relationships

between assets, transactions, and constraints can be naturally

represented as graphs [8]. GNNs can be used to predict the

impact of different variables on the optimization process,

improving solver efficiency. For example, by embedding a

MIP as a graph, GNNs can predict variable importance,

guiding the solver towards more efficient solutions [28].

6.1 MODELING DIGITAL ASSET PORTFOLIOS AS

GRAPHS

In digital asset management, portfolios consist of

multiple assets (e.g., cryptocurrencies or stocks) with

intricate relationships influenced by market conditions,

historical price correlations, and trading constraints. These

relationships can be encoded into a graph structure where

nodes represent individual assets or asset classes. Edges

represent relationships between assets, such as correlations,

trading pairs, or constraints like transaction costs or liquidity

limits. The algorithm we introduced here will first build some

contrastive pairs as introduced in [7] to begin with.

For instance, if two assets are highly correlated, there

would be a stronger edge between their nodes. Similarly,

assets that are frequently traded together or share liquidity

pools might be connected through a higher-weight edge. Such

graph representations allow the MIP problem to capture the

inherent structure of the financial market.

6.2 GNN ARCHITECTURE FOR MIP PROBLEMS

GNNs operate by aggregating information from a

node’s neighbors in the graph, allowing them to learn

representations of the assets that account for their

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 47

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

interdependencies. This is particularly useful in MIP because

it enables the solver to understand how changes in one asset’s

allocation (represented as a decision variable in the MIP)

affect the others. The typical GNN process includes the

following steps:

1. Node Embedding: Each node (asset) is assigned an initial

feature vector based on relevant financial metrics, such

as historical returns, volatility, or liquidity.

2. Message Passing: GNNs update node embeddings by

passing messages between neighboring nodes. This step

aggregates information from the neighbors of each asset,

allowing the model to capture the dependencies between

assets.

3. Output Prediction: The final node embeddings are used

to predict variables important for solving the MIP

problem, such as the likelihood that an asset should be

included in the optimal portfolio, or the importance of

specific constraints. GNNs can predict the impact of

individual assets or asset interactions on the optimization

objective, guiding the solver towards more informed

decisions.

6.3 VARIABLE IMPORTANCE PREDICTION FOR

MIP

One of the primary benefits of using GNNs in MIP for

digital asset management is their ability to predict variable

importance. In an MIP problem, determining which variables

(e.g., asset allocations, transaction decisions) are most critical

to the objective function is crucial for efficient optimization.

GNNs, through their ability to model asset relationships, can

predict:

1. Which assets are pivotal to the portfolio’s overall

performance: For instance, GNNs can highlight that

certain highly connected asset (those with many strong

edges to other assets) may play a more significant role in

risk reduction or return maximization.

2. How changes in one asset's allocation impact others: By

examining the learned graph structure, GNNs can guide

the solver in making changes that have a cascading

positive effect on the entire portfolio.

For example, if a certain asset pair (nodes) is highly

correlated and tends to move together, the GNN might predict

that reducing the allocation in one of these assets will have a

similar impact to reducing it in the other, making it redundant

to optimize both simultaneously. This insight allows the MIP

solver to focus on the more influential variables, reducing

computational complexity.

6.4 GUIDING THE SOLVER FOR MORE EFFICIENT

SOLUTIONS

Traditional MIP solvers like Branch-and-Bound and

Cutting Plane methods rely on systematic exploration of

feasible regions and constraint generation, often leading to

high computational costs. By incorporating GNNs, the solver

can be guided towards more promising regions of the solution

space. Specifically, GNNs can:

1. Prioritize variable branching: In the Branch-and-Bound

process, GNNs can help determine which variables to

branch on by predicting their importance. By focusing on

the most critical variables (e.g., assets that are central in

the graph or have high edge weights), the solver can

reduce the number of branches needed to find the optimal

solution.

2. Efficient constraint relaxation: In scenarios where the

MIP is too complex, GNNs can suggest which

constraints (e.g., transaction costs or liquidity limits) can

be relaxed or should be strictly enforced. This allows the

solver to relax less important constraints, solving a

simpler problem that can still provide a near-optimal

solution.

3. Inform heuristic generation: Heuristics like Simulated

Annealing or Tabu Search often rely on randomized

moves in the solution space. By incorporating the

predictions from a GNN, these heuristics can be guided

to make more informed decisions about which variables

to tweak. For example, GNNs could suggest which assets

should be prioritized for allocation changes, improving

the effectiveness of the heuristic search.

6.5 DYNAMIC AND REAL-TIME APPLICATION

In digital asset management, market conditions change

rapidly, and an asset's importance may shift due to sudden

price fluctuations or liquidity changes. GNNs can be

particularly valuable in real-time applications, as they can be

trained to capture dynamic relationships between assets and

adjust predictions accordingly. For instance:

1. Real-time Portfolio Rebalancing: By constantly updating

the graph structure based on new market data, GNNs can

inform the MIP solver about changes in asset correlations,

volatility, or liquidity constraints. This allows the solver

to adjust the portfolio in real-time, making it more

responsive to market shifts.

2. Transaction Scheduling: GNNs can help optimize the

timing of transactions by predicting how asset prices and

correlations will evolve over time, enabling the solver to

make smarter buy/sell decisions that minimize costs and

maximize returns.

6.6 HYBRID MIP-GNN APPROACHES

A promising approach in solving large-scale MIP

problems is to integrate GNNs into traditional optimization

frameworks. In hybrid MIP-GNN approaches: The MIP

problem is first embedded as a graph where each variable and

constraint are represented as a node or edge. GNNs are used

to preprocess the problem, predicting variable and constraint

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 48

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

importance. The predictions from the GNN are then fed into

traditional solvers like Branch-and-Bound, Cutting Plane, or

metaheuristic solvers (e.g., Simulated Annealing or Tabu

Search) to guide the solution process.

7 RESULT ANALYSIS

We evaluate the machine learning assisted branch-and-

bound (Section 5.1), cutting plane generation (Section 5.2),

heuristics for approximate solution (Section 5.3), and hybrid

GNN-MIP (Section 6.6) with our benchmark digital asset

data sets. The data sets are provided by our data vendor for

digital asset portfolio management. We have also constrained

the solution time to 3 minutes, so traditional branch-and-

bound, cutting plane generation, approximate solution and

GNN-MIP may not reach their optimal solution with the time

constraint.

FIGURE 1. BRANCH AND BOUND

For branch-and-bound, the machine learning assisted

solution (as shown in Figure 1) has better solutions for 32%

of all the cases, while traditional one only wins for 18.6% of

all cases. The machine learning assisted branching utilizes

algorithm introduced in [6], and hence yield similar results.

When comparing the performance for the cutting plane

generation scenarios (as shown in Figure 2), machine learning

assisted approach wins in 45.3% of all cases, while traditional

ones win in 26.5% of all cases. By borrowing the knowledge

graph embedding techniques from [8], the few shots-learning

has the higher chance to bring better result within the 3

minutes time windows.

FIGURE 2. CUTTING PLANES GENERATION

FIGURE 3. APPROXIMATE SOLUTION

In term of approximate solutions (as shown in Figure 3),

machine learning assisted solution get better results in 48.9%

of all the cases, while traditional method only triumphs in 2.1%

of all the cases. This is due to traditional heuristics approach

method usually running very slow and may stuck at local

optimal solution within the time-window. ML assisted

solution can always get solution within the 3 minutes time-

window while the traditional approach may not reach the

optimal in this time frame.

Finally, we compare the hybrid GNN-MIP approach

with the traditional MIP approach. The hybrid approach

achieves better results in 35% of all cases, while they are on-

par in 53.5% of all the cases, traditional MIP only gets better

results in 11.8% of all cases.

FIGURE 4. GNN MIP

8 CONCLUSION

In this paper, we proposed a few hybrid approaches that

integrate machine learning techniques with traditional Mixed

Integer Programming (MIP) to tackle optimization problems,

specifically within the context of digital asset management.

By leveraging a dataset provided by our data vendor, which

contains real-world instances of asset allocation, risk

management, and portfolio optimization, we demonstrated

the viability of our method in handling large-scale, complex

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 49

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

MIP cases. The hybrid model, combining the rigor of MIP

and the predictive power of machine learning, offered

significant improvements in solution quality and

computational efficiency compared to traditional methods.

Specifically, our approach enabled faster convergence to

optimal or near-optimal solutions for a range of digital asset

management scenarios, including asset rebalancing and

pricing strategies.

Our results suggest that the integration of machine

learning into traditional optimization frameworks can provide

robust solutions to problems in digital asset management,

where the volume of data and the dynamic nature of assets

demand both accuracy and speed. Furthermore, the insights

gained from the digital asset dataset underline the potential of

machine learning in enhancing decision-making processes in

financial domains. Future work could extend this hybrid

framework to other areas of financial services, as well as

explore the incorporation of more advanced learning models

to further boost performance.

ACKNOWLEDGMENTS

The authors thank the editor and anonymous reviewers

for their helpful comments and valuable suggestions.

FUNDING

Not applicable.

INSTITUTIONAL REVIEW BOARD

STATEMENT

Not applicable.

INFORMED CONSENT STATEMENT

Not applicable.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

CONFLICT OF INTEREST

The authors declare that the research was conducted in

the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

PUBLISHER'S NOTE

All claims expressed in this article are solely those of

the authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.

AUTHOR CONTRIBUTIONS

Not applicable.

ABOUT THE AUTHORS

EL MEHDAOUI, Youcef

Coinbase Research, Canada.

REFERENCES

[1] Y. Bengio, A. Lodi and A. Prouvost, "Machine learning

for combinatorial optimization: a methodological tour

d'horizon," European Journal of Operational Research,

vol. 290, p. 405–421, 2021.

[2] D. Bertsimas and J. Dunn, Machine learning under a

modern optimization lens, Dynamic Ideas LLC, 2019.

[3] Y. Jin, "GraphCNNpred: A stock market indices

prediction using a Graph based deep learning system,"

arXiv preprint arXiv:2407.03760, 2024.

[4] Y. Yang, Y. Jin, Q. Tian, Y. Yang, W. Qin and X. Ke,

"Enhancing Gastrointestinal Diagnostics with YOLO-

Based Deep Learning Techniques," 2024.

[5] Z. Wang, Y. Zhu, Z. Li, Z. Wang, H. Qin and X. Liu,

"Graph neural network recommendation system for

football formation," Applied Science and Biotechnology

Journal for Advanced Research, vol. 3, p. 33–39, 2024.

[6] Z. Li, B. Wang and Y. Chen, "Incorporating economic

indicators and market sentiment effect into US Treasury

bond yield prediction with machine learning," Journal of

Infrastructure, Policy and Development, vol. 8, p. 7671,

2024.

[7] Z. Li, B. Wang and Y. Chen, "A Contrastive Deep

Learning Approach to Cryptocurrency Portfolio with US

Treasuries," Journal of Computer Technology and

Applied Mathematics, vol. 1, pp. 1-10, 2024.

[8] Z. Li, B. Wang and Y. Chen, "Knowledge Graph

Embedding and Few-Shot Relational Learning Methods

for Digital Assets in USA," Journal of Industrial

Engineering and Applied Science, vol. 2, pp. 10-18, 2024.

[9] L. Xu, J. Liu, H. Zhao, T. Zheng, T. Jiang and L. Liu,

"Autonomous Navigation of Unmanned Vehicle Through

Deep Reinforcement Learning," arXiv preprint

arXiv:2407.18962, 2024.

Academic Journal of Natural Science

Journal Home: ajns.suaspress.org | CODEN: AJNSAE | NAAN: 40704

Vol. 1, No. 1, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES 50

Copyright © 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

[10] M. S. Peiris, "TRANSFORMATIVE INTEGRATION

OF ARTIFICIAL INTELLIGENCE IN

TELEMEDICINE, REMOTE HEALTHCARE, AND

VIRTUAL PATIENT MONITORING: ENHANCING

DIAGNOSTIC ACCURACY, PERSONALIZING

CARE," International Journal of Intelligent Healthcare

Analytics, vol. 104, p. 1019–1030, 2024.

[11] H. Liu, Y. Shen, C. Zhou, Y. Zou, Z. Gao and Q. Wang,

"TD3 Based Collision Free Motion Planning for Robot

Navigation," arXiv preprint arXiv:2405.15460, 2024.

[12] B. Wang, Y. Chen and Z. Li, "A novel Bayesian Pay-As-

You-Drive insurance model with risk prediction and

causal mapping," Decision Analytics Journal, p. 100522,

2024.

[13] Z. Wu, "Deep Learning with Improved Metaheuristic

Optimization for Traffic Flow Prediction," Journal of

Computer Science and Technology Studies, vol. 6, p. 47–

53, 2024.

[14] Z. Wu, "MPGAAN: Effective and Efficient

Heterogeneous Information Network Classification,"

Journal of Computer Science and Technology Studies, vol.

6, p. 08–16, 2024.

[15] Z. Wang, Y. Chen, F. Wang and Q. Bao, "Improved Unet

model for brain tumor image segmentation based on

ASPP-coordinate attention mechanism," arXiv preprint

arXiv:2409.08588, 2024.

[16] J. Zhang, C. Liu, X. Li, H.-L. Zhen, M. Yuan, Y. Li and

J. Yan, "A survey for solving mixed integer programming

via machine learning," Neurocomputing, vol. 519, p. 205–

217, 2023.

[17] M. Gasse, D. Chételat, N. Ferroni, L. Charlin and A.

Lodi, "Exact combinatorial optimization with graph

convolutional neural networks," NeurIPS, 2019.

[18] H. He, H. Daume III and J. M. Eisner, "Learning to

search in branch and bound algorithms," in NeurIPS, 2014.

[19] Y. Tang, S. Agrawal and Y. Faenza, "Reinforcement

learning for integer programming: Learning to cut," in

ICML, 2020.

[20] M.-F. Balcan, T. Dick and T. Sandholm, "Learning-

based cutting plane selection for mixed-integer

optimization," in Advances in Neural Information

Processing Systems, NeurIPS, 2018, p. 10751–10760.

[21] M. Paulus, G. Zarpellon, A. Krause, L. Charlin and C.

Maddison, "Learning to cut by looking ahead: Cutting

plane selection via imitation learning," in ICML, 2022.

[22] Y. Chalco-Cano and others, "A hybrid metaheuristic

optimization approach for solving mixed-integer

programming problems," Expert Systems with

Applications, vol. 150, p. 113258, 2020.

[23] T. Berthold, M. Francobaldi and G. Hendel, "Improving

MIP solutions with large neighborhood search," in

CPAIOR, 2022.

[24] D. Pisinger and S. Ropke, "Large neighborhood search,"

in Handbook of metaheuristics, 2010.

[25] M. Fischetti, F. Glover and A. Lodi, "The feasibility

pump," Mathematical programming, vol. 104, p. 91–104,

2005.

[26] V. Nair and others, "Solving mixed integer programs

using neural networks," Nature Machine Intelligence, vol.

2, p. 333–341, 2020.

[27] A. Lodi and G. Zarpellon, "Learning and optimization:

the primal-dual method revisited," 4OR, vol. 15, p. 421–

444, 2017.

[28] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser and B.

Dilkina, "Learning to branch in mixed integer

programming," in Proceedings of the AAAI conference

on artificial intelligence, 2017.

