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Abstract: In an era of exploding financial‐market information and rapid algorithmic iteration, traditional asset‑return 

forecasting models struggle to exploit unstructured text. Using cross‑asset data—equities, Treasuries and commodity futures—

from 2004 to 2024, we build an integrated prediction framework that fuses semantic factors extracted by Large Language 

Models (LLMs) with price‑volume and macro‑numerical factors. We benchmark it against Logit, Random Forest, LightGBM 

and bidirectional LSTM. A comprehensive evaluation with weighted F₁, ROC‑AUC, Information Ratio and Sharpe Ratio 

shows that (i) LLM‑based semantic factors significantly improve directional accuracy (F₁ + 20.5 %, ROC‑AUC + 11.9 %); (ii) 

after a 3 bp transaction cost, the LLM‑driven long–short portfolio achieves annualised information and Sharpe ratios of 0.96 

and 1.17, markedly outperforming all baselines; (iii) robustness checks confirm this edge across high‑volatility regimes, asset 

classes and text‑lag scenarios; and (iv) the combination of SHAP and attention visualisation traces keyword‑level 

contributions, enhancing interpretability. Our results provide reproducible, quantifiable evidence for large‑scale LLM 

deployment in quantitative investing and point to future work on model compression, slippage estimation and multimodal 

extension.  
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1 INTRODUCTION 

Against the backdrop of a deepening digital economy 

and financial globalisation, the accuracy and timeliness of 

asset‑return forecasts have become critical for enhancing 

capital‑allocation efficiency and investment 

decision‑making [1-2]. Cloud computing and distributed 

storage have lowered the cost of acquiring and processing 

massive financial data; large volumes of structured indicators 

and unstructured text (news, social media, research reports) 

now flow rapidly into investment‑analysis pipelines. Yet 

traditional statistical models—ARIMA, CAPM, linear 

regression—rely on linear assumptions and low‑dimensional 

features. They capture market shocks, cross‑asset nonlinear 

linkages and high‑frequency sentiment swings poorly, and in 

volatile environments their performance deteriorates 

sharply [3-4]. 

Large Language Models (LLMs), built on the 

Transformer architecture, have transformed natural‑language 

processing. Their multilayer self‑attention extracts contextual 

dependencies from very long sequences, embedding 

heterogeneous text into a unified semantic space and enabling 

fine‑grained characterisation of micro‑market sentiment and 

macro‑economic expectations [5]. Early evidence shows that 

sentiment factors distilled by LLMs complement 

price‑volume factors and can raise the risk‑adjusted 

performance of stock‑selection and timing strategies [6-7]. 

However, most studies focus on single markets or limited 

asset classes and lack systematic, controlled comparisons 

with conventional machine‑learning models under a unified 

framework. Nor do they fully assess LLM stability and 

economic value across market cycles. 

To fill this gap, we develop a cross‑asset evaluation 

framework covering equities, bonds and commodity futures, 

comparing an LLM‑augmented model with mainstream 

deep‑learning and econometric alternatives[8]. Our 

innovations are threefold: (i) a unified data pipeline that fuses 

market data with multi‑source textual sentiment signals, 

testing LLM generalisation in a high‑dimensional, 

heterogeneous feature space; (ii) multi‑metric evaluation 

(statistical significance, trading returns, risk‑adjusted returns) 

that quantifies incremental value under strict sample and 

feature controls; and (iii) the integration of SHAP 

decomposition and simulated back‑tests to balance 

interpretability with deployment feasibility[9]. 

The remainder of this paper is organised as follows. 
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Section 2 surveys related literature. Section 3 describes data, 

variables and methodology. Section 4 reports empirical 

results and robustness and interpretability analyses. Section 5 

discusses model‑optimisation strategies and production‑level 

deployment challenges. Section 6 concludes and outlines 

future research directions[10]. 

 

2 LITERATURE REVIEW 

2.1 EVOLUTION OF LARGE LANGUAGE MODELS 

Language‑model development has progressed through 

three stages. Stage 1 – Statistical n‑gram models predicted 

the next token via joint probabilities of fixed‑length word 

sequences but captured only short‑range dependencies and 

suffered from data sparsity [11]. Stage 2 – Neural language 

models began with Bengio et al. (2003), who combined word 

embeddings with feed‑forward networks; recurrent networks 

(RNNs) and long‑short‑term memory (LSTM) mitigated 

long‑dependency issues but faced gradient vanishing and 

serial‑processing bottlenecks [12-13]. Stage 3 – 

Transformer‑based models introduced multi‑head 

self‑attention, allowing parallel modelling of arbitrarily long 

dependencies and yielding dramatic performance gains [14-

15]. Model sizes scaled from millions to hundreds of billions 

of parameters, exhibiting near‑linear “scale effects.” GPT‑3, 

PaLM and GPT‑4 confirmed this and provided transferable 

semantic representations for finance. 

2.2 LLM APPLICATIONS IN FINANCE 

Financial text—news, filings, analyst notes, 

social‑media posts—has exploded. Transformer‑based LLMs 

offer new ways to exploit it. Early work examined sentiment: 

Bollen et al. (2011) showed that Twitter mood indices 

anticipated DJIA moves; with FinBERT, intraday 

explanatory power rose from <8 % to >12 % [16]. Beyond 

sentiment, Sun and Wu (2023) used GPT‑3 event 

embeddings in a cross‑sectional factor model and added 

4.7 pp to annualised α for US stocks (2000–2022), retaining 

significance during extreme volatility [17]. Other studies 

combined LLM‑generated risk summaries with price‑volume 

factors to predict bond credit spreads, explaining ~15 % of 

quarterly variation—outperforming topic‑model 

baselines [18]. 

LLMs also aid compliance: Chen et al. (2024) trained 

Legal‑GPT for 10‑K/10‑Q filings, extracting key points in 

under three seconds, matching professional auditors while 

cutting review costs by >80 % [19]. In ESG scoring, few‑shot 

LLM classification of news and social media increases 

coverage fivefold and reduces latency to T+0 [20]. 

Despite strong results, domain shift and limited 

interpretability hinder adoption. Financial lexicons differ 

from general corpora, requiring domain‑adaptive pre‑training 

or prompt tuning. Investment management demands 

transparent rationales, yet LLMs are black boxes. Combining 

SHAP, attention roll‑out and knowledge distillation can 

enhance transparency and cut inference latency [21-22]. 

2.3 PERFORMANCE METRICS AND COMPARISON 

WITH TRADITIONAL MODELS 

Asset‑return prediction evaluation must consider 

statistical and economic dimensions. Accuracy, Recall and 

F₁ are common; MSE and MAPE are used for regression [23]. 

Accuracy can mislead under class imbalance, so we adopt 

weighted F₁ and ROC‑AUC plus Information Ratio (IR) and 

Sharpe Ratio (SR). 

Linear regression and ARIMA remain baselines but 

assume linear relations and IID residuals, failing under 

structural breaks [24-25]. SVMs and Random Forests capture 

non‑linearities but handle text poorly and scale badly with 

ultra‑high‑dimensional corpora. LLMs learn text 

representations end‑to‑end, removing feature‑engineering 

burdens and transferring well in few‑shot settings. On a 

US‑equity sample (2004–2023), a GPT‑4 sentiment factor 

plus price‑volume data raised daily weighted F₁ by 18.2 % 

over linear regression and 11.5 % over SVM; converting 

signals to equal‑weight long–shorts lifted annual IR 

from 0.34 (LR) and 0.57 (SVM) to 0.92, with SR > 1.1 

during the 2020‑Q1 crisis [26]. 

LLM gains are not free: compute costs are high and 

opacity increases compliance risk. SHAP + attention roll‑out 

and parameter distillation/quantisation shrink 

multi‑billion‑parameter models to sizes that infer in real time 

on a single T4 GPU [27]. 

2.4 MACHINE‑LEARNING METHODS IN 

ASSET‑RETURN PREDICTION 

Econometric models impose linear structures and falter 

under nonlinear, high‑dimensional dynamics [28]. Machine 

learning (ML) widened the ceiling. SVMs model nonlinear 

boundaries; Random Forests (RF) and Gradient Boosting 

Machines (GBM) ensemble trees to reduce variance [29]. 

Deep architectures—LSTM for sequences, 1‑D CNN for 

local price patterns—often outperform baselines: RF/GBM 

improve daily weighted F₁ by 8–12 pp, and LSTM retains 

SR > 1 in high‑volatility periods [30]. 

Unsupervised learning also advances: clustering 

reduces multicollinearity; autoencoders compress features for 

thin‑sample assets; graph‑convolution networks (GCN) 

model supply‑chain or co‑mention graphs [31]. Yet ML 

depends on feature engineering and hyper‑tuning; noise, drift 

and model opacity remain challenges. 

LLMs offset ML’s text gap by producing sentiment 

vectors that integrate smoothly with price‑volume data. We 

test whether adding LLM vectors lifts RF, GBM and LSTM 

accuracy and whether gains persist across cycles and assets. 
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2.5 SUMMARY AND RESEARCH GAPS 

Methods have evolved from linear econometrics to 

kernel/ensemble ML to Transformer‑based LLMs. 

Evaluation metrics now combine statistical and economic 

dimensions [32]. Gaps remain: most LLM studies focus on 

US equities; cross‑asset evidence is scarce; text–price fusion 

is rudimentary; compute demands and opacity hinder 

deployment. We address these by cross‑asset experiments, 

gated‑attention fusion and light‑weight, explainable LLMs. 

3 DATA AND METHODOLOGY 

3.1 DATA SOURCES AND SAMPLE 

CONSTRUCTION 

To ensure external validity, we design a cross‑market 

× cross‑cycle sample. Market data from Bloomberg and 

Refinitiv cover daily close and volume (2 Jan 2004 –

 31 Dec 2024): (i) 505 S&P 500 stocks; (ii) ICE 2Y, 5Y and 

10Y Treasury futures; (iii) CME Gold, WTI Crude and Corn 

futures. Text data comprise: (1) Dow Jones and Reuters news 

plus GDELT events; (2) SEC 10‑K/10‑Q full texts and major 

8‑K filings; (3) 50 k finance‑related X/Twitter posts via the 

Academic API. 

Stocks and commodities are T+0 aligned; Treasuries use 

the nearest trading day. Multiple texts per day are 

minute‑aggregated and mapped to the daily cross‑section. 

Missing or anomalous price–volume records are winsorised 

(1–99 %) and forward‑filled. Text fields undergo entity 

normalisation via SpaCy’s finance dictionary, and a 32‑k 

SentencePiece vocabulary reduces sparsity [33]. 

 

FIGURE 1 RESEARCH‑FRAMEWORK FLOWCHART 

TABLE 1 DESCRIPTIVE STATISTICS 

Asset 

class 

Mean 

close SD 

Mean 

volum

e (k) SD 
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ment 

25‑pct 

75‑

pct 

Equity 

(S&P 5

00) 
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02 
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7 
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y 

futures 

111.09 

USD 

7.8

5 
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2 

−0.18 0.2

2 

Asset 

class 

Mean 

close SD 

Mean 

volum

e (k) SD 

Senti

ment 

25‑pct 

75‑

pct 

Comm

odity 

(WTI) 

63.80 U

SD 

21.

41 

723 46

5 

−0.29 0.3

5 

Notes: Prices and volumes are daily; volume in 

thousands. Sentiment score (Sentₜ) is the z‑score of the 

FinBERT CLS vector. All variables are 1 %/99 % winsorised 

before statistics. 

3.2 TEXT‑SEMANTIC‑FACTOR EXTRACTION 

For comparability and efficiency, we start from 

FinBERT‑Domain‑PT rather than GPT‑4‑Turbo, continuing 

self‑supervised training for three epochs on six million 

finance texts. For each item we use the headline plus the first 

256 tokens; the CLS vector (768‑d) is z‑normalised to form 

the daily sentiment factor (Sentₜ) and uses RoPE positional 

encoding[34]. 

3.3 NUMERICAL FEATURES AND BENCHMARK 

FACTORS 

Price‑volume factors: lagged log‑return (Retₜ₋₁), 

log‑volume change (ΔVolₜ₋₁), high–low amplitude 

(HighLowₜ₋₁) and 5‑day MA deviation (DispMA5ₜ₋₁). Macro 

controls: 10Y–2Y term‑spread (Termₜ₋₁), VIX (VIXₜ₋₁) and 

dollar‑index return (DXYₜ₋₁). All numerical features are 

252‑day de‑extremed and cross‑sectionally 

rank‑normalised[35]. 

3.4 MODEL SPECIFICATION AND TRAINING 

STRATEGY 

Our core model is a Bi‑Transformer Encoder + Gated 

Fusion (GLU). Input 1: sentiment vector. Input 2: a 64 × F 

price–macro matrix unfolded over time. Outputs fuse via 

GLU and feed a two‑layer MLP producing the up‑move 

probability P(up). Training: 2004–2018; validation: 2019–

2020; test: 2021–2024. We use Focal Loss (α = 0.25, γ = 2) 

for class imbalance; optimiser: AdamW, LR 1 × 10⁻⁴ with 

cosine decay, early‑stop 10 epochs. 

Baselines: (i) Logit; (ii) Random Forest (n = 500); 

(iii) Bi‑LSTM; (iv) LightGBM without text. All use the same 

splits and walk‑forward expanding retraining to avoid 

look‑ahead [36]. 
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FIGURE 2 BI‑TRANSFORMER + GATED‑FUSION 

ARCHITECTURE 

TABLE 2 HYPER‑PARAMETER SETTINGS 

Model Key hyper‑parameters 

Bi‑Transfor

mer + GLU 

6 Transformer layers; 8 heads; 

hidden 512; GLU hidden 128; 

dropout 0.10; AdamW LR 1×10⁻⁴ with 

cosine decay; early stop 10 

Logit L2 regularisation (C = 1.0) 

Random 

Forest 

n_estimators = 500; max_depth = None; 

min_samples_leaf = 1 

LightGBM n_estimators = 500; num_leaves = 64; 

learning_rate = 0.05; max_depth = –1 

Bi‑LSTM hidden 128; layers 1; seq_len 64; 

dropout 0.20 

3.5 PERFORMANCE EVALUATION AND 

ROBUSTNESS CHECKS 

Statistical metrics: weighted F₁, ROC‑AUC, MSE. 

Economic metrics: Information Ratio and annualised 

Sharpe[37]. Signals form equal‑weight long–shorts 

(up → long; down → short), daily rebalanced, 3 bp/side cost. 

Robustness: (i) asset subsamples; (ii) volatility layers 

(top/bottom 30 % by VIX); (iii) text‑lag Δt = 0–3 days; 

(iv) hyper‑grid perturbations (LR, GLU width). Design 

minimises leakage and selection bias. 

 

4 EMPIRICAL RESULTS AND 

ANALYSIS 

4.1 STATISTICAL PREDICTION ACCURACY 

Table 3 shows that the LLM model leads across all 

metrics on the 2021–2024 test set: weighted F₁ 0.624 (+20.5 % 

over LightGBM), ROC‑AUC 0.741 and MSE 0.132. 

Diebold–Mariano tests confirm significance at 1 %. 

 

FIGURE 3 ROC‑AUC COMPARISON (FIVE MODELS) 

TABLE 3 CLASSIFICATION PERFORMANCE (TEST 2021–

2024) 

Model 

Weighted 

F₁ 

ROC‑AU

C MSE 

Bi‑Transform

er + GLU 

0.624† 0.741† 0.132 ± 0.00

6 

Bi‑LSTM 0.562 0.690 0.151 ± 0.00

7 

LightGBM 0.518 0.662 0.155 ± 0.00

7 

Random 

Forest 

0.495 0.640 0.160 ± 0.00

8 

Logit 0.472 0.610 0.169 ± 0.00

9 

† Significant vs. runner‑up at 1 %. 

4.2 ECONOMIC PERFORMANCE AND 

RISK‑ADJUSTED RETURNS 

After 3 bp/side costs, the LLM portfolio posts IR 0.96 

and SR 1.17, beating Random Forest (0.43; 0.65) and 

LightGBM (0.57; 0.78). Volatility 10.8 %, max drawdown 

−8.1 %. Jobson–Korkie shows SR improvement vs. LSTM is 

significant at 5 %[38]. 

 

FIGURE 4 CUMULATIVE RETURNS (LLM VS. BEST 

BASELINE) 
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TABLE 4 RISK‑RETURN METRICS (TEST 2021–2024) 

Model IR SR Ann. vol % Max DD % 

Logit 0.28 0.46 12.7 −14.3 

Random Forest 0.43 0.65 11.9 −11.1 

LightGBM 0.57 0.78 11.5 −10.4 

Bi‑LSTM 0.62 0.83 11.3 −10.0 

Bi‑Transformer 

+ GLU 

0.96 1.17 10.8 −8.1 

4.3 ROBUSTNESS ANALYSIS 

F₁ gains of +0.14 and +0.11 appear in equities and 

commodities; bonds see smaller but positive gains. In 

high‑vol (top 30 % VIX) the LLM retains SR > 0.98. Text‑lag 

Δt 0–3 days shows gradual decay but advantage for Δt ≤ 1. 

Hyper‑perturbations (±20 % LR, GLU width) move F₁/IR by 

≤3 % (Table 5). 

 

FIGURE 5 ROBUSTNESS CHARTS 

TABLE 5 HYPER‑PARAMETER PERTURBATION IMPACT 

Perturbation ΔF₁ ΔIR 

LR –20 % −0.008 −0.02 

LR +20 % −0.006 −0.01 

GLU –20 % −0.010 −0.03 

GLU +20 % −0.007 −0.02 

4.4 MODEL INTERPRETABILITY 

SHAP and attention roll‑out show text factors 

contribute >30 %. During the 16 Jun 2022 FOMC hike, 

attention focused on “higher for longer” and “unexpected 

slowdown,” matching market moves. 

 

FIGURE 6 SHAP & ATTENTION VISUALISATION 

TABLE 6 KEYWORD SHAP CONTRIBUTIONS (16 JUN 2022 

FOMC) 

Keyword SHAP Sign 

higher 0.072 + 

for 0.061 + 

longer 0.058 + 

unexpected 0.051 + 

slowdown 0.049 + 

inflation −0.043 − 

hawkish −0.039 − 

policy −0.037 − 

75 bp −0.034 − 

rate −0.030 − 

4.5 SUMMARY 

The LLM framework outperforms traditional ML in 

accuracy, tradability and robustness across assets and regimes. 

SHAP and attention improve transparency, aiding 

compliance[39] 

5 MODEL OPTIMISATION AND 

DEPLOYMENT CHALLENGES 

Although the Bi‑Transformer + GLU model shows 

strong out‑of‑sample performance, production deployment 

must address compute cost, latency, interpretability and 

monitoring[40]. 

Model compression. Knowledge distillation and 8‑bit 
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quantisation can compress the 300 M‑parameter encoder to 

~70 M without a material loss of F₁, enabling single‑GPU 

inference at <15 ms per asset. 

Prompt tuning. Domain‑adaptive prefix‑tuning lets us 

update the sentiment encoder monthly with ~1 % of full 

pre‑training compute, mitigating domain drift. 

Slippage and liquidity. Back‑tests assume fixed 3 bp 

costs; a production system must model impact via a nonlinear 

volume‑weighted function and route orders through a 

smart‑order router (SOR). 

Risk and compliance. We embed SHAP explanations 

in the order‑management system (OMS) so each trade links 

to top‑5 contributing tokens. A model‑risk‑management 

(MRM) dashboard tracks performance decay, drift plots and 

concept‑shift alarms. 

Scalability. Batching per‑asset inferences and caching 

shared news embeddings reduce latency spikes when macro 

events release. 

6 CONCLUSION AND FUTURE 

RESEARCH DIRECTIONS 

Using 2004–2024 cross‑asset data we build an 

LLM‑augmented prediction framework and benchmark it 

against mainstream ML and econometric models. LLM 

semantic vectors boost F₁ and ROC‑AUC, and their trading 

signal yields higher IR/SR after costs. Advantages persist 

across assets, volatility states and text lags, and SHAP + 

attention satisfy basic explainability[41-43]. 

Theoretical contribution. We quantify the marginal 

predictive gain of LLMs under a unified pipeline and 

demonstrate a gated‑attention design balancing accuracy and 

class balance[44]. 

Practical implication. LLM‑driven sentiment factors 

can enhance short‑cycle strategies, and compression + 

explainability enable deployment in compute‑ and 

compliance‑constrained environments[45]. 

Limitations. (1) Only first 256 tokens may omit 

information in longer documents; (2) fixed 3 bp costs ignore 

liquidity differences; (3) inference latency and hardware costs 

need fuller quantification. 

Future work. (1) Longer‑context encoders or chunked 

attention for regulatory filings; (2) embed LLM factors in 

multifactor risk models with momentum, value and quality; 

(3) live broker‑API execution to model dynamic impact; (4) 

multimodal Transformers merging supply‑chain graphs and 

order‑book depth[46-47]. 

LLMs show strong potential in asset‑return prediction 

and broader quantitative research. Continuous data growth 

and algorithmic optimisation may position LLM‑driven 

multimodal systems as a cornerstone of next‑generation 

investing. 
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