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Abstract: In an era of exploding financial -market information and rapid algorithmic iteration, traditional asset-return
forecasting models struggle to exploit unstructured text. Using cross-asset data—equities, Treasuries and commodity futures—
from 2004 to 2024, we build an integrated prediction framework that fuses semantic factors extracted by Large Language
Models (LLMs) with price-volume and macro-numerical factors. We benchmark it against Logit, Random Forest, LightGBM
and bidirectional LSTM. A comprehensive evaluation with weighted Fi, ROC-AUC, Information Ratio and Sharpe Ratio
shows that (i) LLM-based semantic factors significantly improve directional accuracy (Fi +20.5 %, ROC-AUC + 11.9 %); (ii)
after a 3 bp transaction cost, the LLM-driven long—short portfolio achieves annualised information and Sharpe ratios of 0.96
and 1.17, markedly outperforming all baselines; (iii) robustness checks confirm this edge across high-volatility regimes, asset
classes and text-lag scenarios; and (iv) the combination of SHAP and attention visualisation traces keyword-level
contributions, enhancing interpretability. Our results provide reproducible, quantifiable evidence for large-scale LLM
deployment in quantitative investing and point to future work on model compression, slippage estimation and multimodal

extension.
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1 INTRODUCTION

Against the backdrop of a deepening digital economy
and financial globalisation, the accuracy and timeliness of
asset-return forecasts have become critical for enhancing
capital-allocation efficiency and investment
decision-making [1-2]. Cloud computing and distributed
storage have lowered the cost of acquiring and processing
massive financial data; large volumes of structured indicators
and unstructured text (news, social media, research reports)
now flow rapidly into investment-analysis pipelines. Yet
traditional statistical models—ARIMA, CAPM, linear
regression—rely on linear assumptions and low-dimensional
features. They capture market shocks, cross-asset nonlinear
linkages and high-frequency sentiment swings poorly, and in
volatile environments their performance deteriorates
sharply [3-4].

Large Language Models (LLMs), built on the
Transformer architecture, have transformed natural-language
processing. Their multilayer self-attention extracts contextual
dependencies from very long sequences, embedding
heterogeneous text into a unified semantic space and enabling
fine-grained characterisation of micro-market sentiment and

macro-economic expectations [5]. Early evidence shows that
sentiment factors distilled by LLMs complement
price-volume factors and can raise the risk-adjusted
performance of stock-selection and timing strategies [6-7].
However, most studies focus on single markets or limited
asset classes and lack systematic, controlled comparisons
with conventional machine-learning models under a unified
framework. Nor do they fully assess LLM stability and
economic value across market cycles.

To fill this gap, we develop a cross-asset evaluation
framework covering equities, bonds and commodity futures,
comparing an LLM-augmented model with mainstream
deep-learning and econometric alternatives[8]. Our
innovations are threefold: (i) a unified data pipeline that fuses
market data with multi-source textual sentiment signals,
testing LLM generalisation in a high-dimensional,
heterogeneous feature space; (ii) multi-metric evaluation
(statistical significance, trading returns, risk-adjusted returns)
that quantifies incremental value under strict sample and
feature controls; and (iii) the integration of SHAP
decomposition and simulated back-tests to balance
interpretability with deployment feasibility[9].

The remainder of this paper is organised as follows.
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Section 2 surveys related literature. Section 3 describes data,
variables and methodology. Section 4 reports empirical
results and robustness and interpretability analyses. Section 5
discusses model-optimisation strategies and production-level
deployment challenges. Section 6 concludes and outlines
future research directions[10].

2 LITERATURE REVIEW

2.1 EVOLUTION OF LARGE LANGUAGE MODELS

Language-model development has progressed through
three stages. Stage 1 — Statistical n-gram models predicted
the next token via joint probabilities of fixed-length word
sequences but captured only short-range dependencies and
suffered from data sparsity [11]. Stage 2 — Neural language
models began with Bengio et al. (2003), who combined word
embeddings with feed-forward networks; recurrent networks
(RNNs) and long-short-term memory (LSTM) mitigated
long-dependency issues but faced gradient vanishing and
serial-processing bottlenecks [12-13]. Stage 3 —
Transformer-based models introduced multi-head
self-attention, allowing parallel modelling of arbitrarily long
dependencies and yielding dramatic performance gains [14-
15]. Model sizes scaled from millions to hundreds of billions
of parameters, exhibiting near-linear “scale effects.” GPT-3,
PalLM and GPT-4 confirmed this and provided transferable
semantic representations for finance.

2.2 LLM APPLICATIONS IN FINANCE

Financial text—news, filings, analyst notes,
social-media posts—has exploded. Transformer-based LLMs
offer new ways to exploit it. Early work examined sentiment:
Bollen etal. (2011) showed that Twitter mood indices
anticipated DIJIA moves; with FinBERT, intraday
explanatory power rose from <8 % to >12 % [16]. Beyond
sentiment,  Sun and Wu (2023) used GPT-3 event
embeddings in a cross-sectional factor model and added
4.7 pp to annualised a for US stocks (2000-2022), retaining
significance during extreme volatility [17]. Other studies
combined LLM-generated risk summaries with price-volume
factors to predict bond credit spreads, explaining ~15 % of
quarterly variation—outperforming topic-model
baselines [18].

LLMs also aid compliance: Chen etal. (2024) trained
Legal-GPT for 10-K/10-Q filings, extracting key points in
under three seconds, matching professional auditors while
cutting review costs by >80 % [19]. In ESG scoring, few-shot
LLM classification of news and social media increases
coverage fivefold and reduces latency to T+0 [20].

Despite strong results, domain shift and limited
interpretability hinder adoption. Financial lexicons differ
from general corpora, requiring domain-adaptive pre-training
or prompt tuning. Investment management demands

transparent rationales, yet LLMs are black boxes. Combining
SHAP, attention roll-out and knowledge distillation can
enhance transparency and cut inference latency [21-22].

2.3 PERFORMANCE METRICS AND COMPARISON
WITH TRADITIONAL MODELS

Asset-return prediction evaluation must consider
statistical and economic dimensions. Accuracy, Recall and
F1 are common; MSE and MAPE are used for regression [23].
Accuracy can mislead under class imbalance, so we adopt
weighted Fi and ROC-AUC plus Information Ratio (IR) and
Sharpe Ratio (SR).

Linear regression and ARIMA remain baselines but
assume linear relations and IID residuals, failing under
structural breaks [24-25]. SVMs and Random Forests capture
non-linearities but handle text poorly and scale badly with
ultra-high-dimensional ~ corpora. LLMs learn text
representations end-to-end, removing feature-engineering
burdens and transferring well in few-shot settings. On a
US-equity sample (2004-2023), a GPT-4 sentiment factor
plus price-volume data raised daily weighted F: by 18.2 %
over linear regression and 11.5% over SVM; converting
signals to equal-weight long—shorts lifted annual IR
from 0.34 (LR) and 0.57 (SVM) to 0.92, with SR> 1.1
during the 2020-Q1 crisis [26].

LLM gains are not free: compute costs are high and
opacity increases compliance risk. SHAP + attention roll-out
and parameter distillation/quantisation shrink
multi-billion-parameter models to sizes that infer in real time
on a single T4 GPU [27].

2.4 MACHINE-LEARNING METHODS IN
ASSET-RETURN PREDICTION

Econometric models impose linear structures and falter
under nonlinear, high-dimensional dynamics [28]. Machine
learning (ML) widened the ceiling. SVMs model nonlinear
boundaries; Random Forests (RF) and Gradient Boosting
Machines (GBM) ensemble trees to reduce variance [29].
Deep architectures—LSTM for sequences, 1-D CNN for
local price patterns—often outperform baselines: RF/GBM
improve daily weighted Fi1 by 8—12 pp, and LSTM retains
SR > 1 in high-volatility periods [30].

Unsupervised learning also advances: clustering
reduces multicollinearity; autoencoders compress features for
thin-sample assets; graph-convolution networks (GCN)
model supply-chain or co-mention graphs [31]. Yet ML
depends on feature engineering and hyper-tuning; noise, drift
and model opacity remain challenges.

LLMs offset ML’s text gap by producing sentiment
vectors that integrate smoothly with price-volume data. We
test whether adding LLM vectors lifts RF, GBM and LSTM
accuracy and whether gains persist across cycles and assets.
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2.5 SUMMARY AND RESEARCH GAPS

Methods have evolved from linear econometrics to
kernel/ensemble ML to Transformer-based LLMs.
Evaluation metrics now combine statistical and economic
dimensions [32]. Gaps remain: most LLM studies focus on
US equities; cross-asset evidence is scarce; text—price fusion
is rudimentary; compute demands and opacity hinder
deployment. We address these by cross-asset experiments,
gated-attention fusion and light-weight, explainable LLMs.

3 DATA AND METHODOLOGY

3.1 DATA SOURCES AND SAMPLE
CONSTRUCTION

To ensure external validity, we design a cross-market
x cross-cycle sample. Market data from Bloomberg and
Refinitiv cover daily close and volume (2 Jan 2004 —
31 Dec 2024): (i) 505 S&P 500 stocks; (ii) ICE 2Y, 5Y and
10Y Treasury futures; (iii) CME Gold, WTI Crude and Corn
futures. Text data comprise: (1) Dow Jones and Reuters news
plus GDELT events; (2) SEC 10-K/10-Q full texts and major
8-K filings; (3) 50k finance-related X/Twitter posts via the
Academic API.

Stocks and commodities are T+0 aligned; Treasuries use
the nearest trading day. Multiple texts per day are
minute-aggregated and mapped to the daily cross-section.
Missing or anomalous price—volume records are winsorised
(1-99 %) and forward-filled. Text fields undergo entity
normalisation via SpaCy’s finance dictionary, and a 32-k
SentencePiece vocabulary reduces sparsity [33].

2004-2024
Data Data | »| Feature Performance
Collection Preprocessing Construction Evaluation
v
Model
Training

FIGURE 1 RESEARCH-FRAMEWORK FLOWCHART

TABLE 1 DESCRIPTIVE STATISTICS

Mean Senti
Asset Mean volum ment | 75-
class close SD | e(k) | SD | 25-pct | pct
Comm | 63.80U | 21. | 723 46 | —0.29 |03
odity SD 41 5 5
(WTD)

Notes: Prices and volumes are daily; volume in
thousands. Sentiment score (Sent,) is the z-score of the
FinBERT CLS vector. All variables are 1 %/99 % winsorised
before statistics.

3.2 TEXT-SEMANTIC-FACTOR EXTRACTION

For comparability and efficiency, we start from
FinBERT-Domain-PT rather than GPT-4-Turbo, continuing
self-supervised training for three epochs on six million
finance texts. For each item we use the headline plus the first
256 tokens; the CLS vector (768-d) is z-normalised to form
the daily sentiment factor (Sent;) and uses RoPE positional
encoding[34].

3.3 NUMERICAL FEATURES AND BENCHMARK

FACTORS
Price-volume factors: lagged log-return (Ret-1),
log-volume change (AVol-1), high-low amplitude

(HighLow1) and 5-day MA deviation (DispMAS51). Macro
controls: 10Y-2Y term-spread (Term:), VIX (VIXi1) and
dollar-index return (DXYq1). All numerical features are
252-day de-extremed and cross-sectionally
rank-normalised[35].

3.4 MODEL SPECIFICATION AND TRAINING
STRATEGY

Our core model is a Bi-Transformer Encoder + Gated
Fusion (GLU). Input 1: sentiment vector. Input 2: a 64 x F
price—macro matrix unfolded over time. Outputs fuse via
GLU and feed a two-layer MLP producing the up-move
probability P(up). Training: 2004-2018; validation: 2019—
2020; test: 2021-2024. We use Focal Loss (a=0.25, y=2)
for class imbalance; optimiser: AdamW, LR 1 x 10 with
cosine decay, early-stop 10 epochs.

Baselines: (i) Logit; (ii) Random Forest (n=500);
(iii) Bi-LSTM; (iv) LightGBM without text. All use the same
splits and walk-forward expanding retraining to avoid

Mean Senti look-ahead [36].

Asset Mean volum ment | 75-

class close SD e(k) | SD | 25-pct | pct
Equity | 84.17U | 52. | 6358 41 | -034 |02
(S&P5 | SD 60 02 7
00)
Treasur | 111.09 | 7.8 | 1744 93 | —0.18 | 0.2
y USD 5 2 2
futures
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FIGURE 2 BI-TRANSFORMER + GATED-FUSION
ARCHITECTURE

TABLE 2 HYPER-PARAMETER SETTINGS

Model Key hyper-parameters
Bi-Transfor | 6 Transformer layers; 8 heads;
mer + GLU | hidden 512; GLU hidden 128;

dropout 0.10; AdamW LR 1x10™* with
cosine decay; early stop 10
Logit L2 regularisation (C =1.0)

Random n_estimators =500; max_depth =None;

Forest min_samples leaf=1

LightGBM n_estimators = 500; num_leaves = 64;
learning_rate = 0.05; max depth=-1

Bi-LSTM hidden 128; layers 1; seq_len 64;
dropout 0.20

3.5 PERFORMANCE EVALUATION AND
ROBUSTNESS CHECKS

Statistical metrics: weighted Fi, ROC-AUC, MSE.
Economic metrics: Information Ratio and annualised
Sharpe[37]. Signals form equal-weight long—shorts
(up — long; down — short), daily rebalanced, 3 bp/side cost.
Robustness: (i) asset subsamples; (ii) volatility layers
(top/bottom 30% by VIX); (iii) text-lag At=0-3 days;
(iv) hyper-grid perturbations (LR, GLU width). Design
minimises leakage and selection bias.

4 EMPIRICAL RESULTS AND
ANALYSIS

4.1 STATISTICAL PREDICTION ACCURACY

Table 3 shows that the LLM model leads across all

metrics on the 2021-2024 test set: weighted F1 0.624 (+20.5 %

over LightGBM), ROC-AUCO0.741 and MSEO0.132.
Diebold—Mariano tests confirm significance at 1 %.

ROC curves for competing models (test set 2021-2024)

1.0F

081

0.6

True Positive Rate

0.4

0.21

Bi-Transformer + GLU (AUC 0.741}
—— Bi-LSTM (AUC 0.690)
g — LightGBM (AUC 0.662)
o.ofF ! Random Farest (AUC 0.640)
8 Lagit (AUC 0.610)

0.0 0.2 0.4 06 08 10
False Positive Rate

FIGURE 3 ROC-AUC COMPARISON (FIVE MODELS)

TABLE 3 CLASSIFICATION PERFORMANCE (TEST 2021—

2024)
Weighted ROC-AU
Model F. C MSE
Bi-Transform | 0.624F 0.7417% 0.132 +£0.00
er + GLU 6
Bi-LSTM 0.562 0.690 0.151+0.00
7
LightGBM 0.518 0.662 0.155+0.00
7
Random 0.495 0.640 0.160 £ 0.00
Forest 8
Logit 0.472 0.610 0.169 £ 0.00
9

+ Significant vs. runner-up at 1 %.

4.2 ECONOMIC PERFORMANCE AND
RISK-ADJUSTED RETURNS

After 3 bp/side costs, the LLM portfolio posts IR 0.96
and SR 1.17, beating Random Forest (0.43;0.65) and
LightGBM (0.57; 0.78). Volatility 10.8 %, max drawdown
—8.1 %. Jobson—Korkie shows SR improvement vs. LSTM is
significant at 5 %[38].

Cumulative strategy performance (2021-2024)

Bi-Transformer + GLU

3 x 100} — Bi-LSTM M‘A

N
JM W iy
W
2x10° MNJ/ hwf
N
M

o~

¢

FOMC +75 bp

Cumulative net value (log scale)

10°

2021-012021-072022-012022-072023-012023-072024-012024-072025-01
Date

FIGURE 4 CUMULATIVE RETURNS (LLM VS. BEST
BASELINE)
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TABLE 4 RISK-RETURN METRICS (TEST 2021-2024)

TABLE 5 HYPER-PARAMETER PERTURBATION IMPACT

Model IR SR | Ann. vol % | Max DD %
Logit 0.28 | 0.46 | 12.7 -14.3
Random Forest | 0.43 | 0.65 | 11.9 —11.1
LightGBM 0.57 1 0.78 | 11.5 -10.4
Bi-LSTM 0.62 | 0.83 | 11.3 -10.0
Bi-Transformer | 0.96 | 1.17 | 10.8 —8.1
+GLU

4.3 ROBUSTNESS ANALYSIS

F: gains of +0.14 and +0.11 appear in equities and
commodities; bonds see smaller but positive gains. In
high-vol (top 30 % VIX) the LLM retains SR > 0.98. Text-lag
At 0-3 days shows gradual decay but advantage for At <1.
Hyper-perturbations (20 % LR, GLU width) move Fi/IR by

Perturbation AF, AIR

LR -20% —0.008 —-0.02
LR +20 % —0.006 —-0.01
GLU -20 % —-0.010 —-0.03
GLU +20 % —=0.007 —-0.02

4.4 MODEL INTERPRETABILITY

SHAP and attention roll-out show text factors
contribute >30%. During the 16 Jun 2022 FOMC hike,
attention focused on “higher for longer” and “unexpected
slowdown,” matching market moves.

Attention weights by layer

SHAP contributions Attention weights by layer

53 % (Table 5) SHAP contributions (2022-06-16 FOMC) higher --
I for "
Robustness analysis: F1 increment —--: fonae n
_ 0,051 unexpected
B slowdown 05
[ ] it 04
Asset class — paish I
I poliey
0 15 - 015 ~0.04 —0.02 0.00 0.02 0.04 0.06 e
011 L1 L2 3 14 L5 L6
0.10} FIGURE 6 SHAP & ATTENTION VISUALISATION
0.05} o TABLE 6 KEYWORD SHAP CONTRIBUTIONS (16 JUN 2022
FOMC)
0.00 — — 6' Keyword SHAP Sign
™ oo oo higher 0.072 n
@ for 0.061 +
Market volatility longer 0.058 +
unexpected 0.051 +
0.15} 014 .SIOW(%OWII 0.049 +
inflation —0.043 -
0.10 hawkish —0.039 -
% 0.10F policy —0.037 -
75 bp —0.034 -
0.05f rate —0.030 -
0.00 ' ' 4.5 SUMMARY
‘E‘\o‘ﬂ $\\XQ“ . .
o « The LLM framework outperforms traditional ML in
accuracy, tradability and robustness across assets and regimes.
Text lag (days) SHAP and attention improve transparency, aiding
015 compliance[39]
) 0.12
0.10 5 MODEL OPTIMISATION AND
B 0.09
DEPLOYMENT CHALLENGES
0.05
0.05} 0.03 Although the Bi-Transformer + GLU model shows
strong out-of-sample performance, production deployment
0.00 ! ! ! ! must address compute cost, latency, interpretability and
0 A 2 3
NG e N N monitoring[40].
FIGURE 5 ROBUSTNESS CHARTS Model compression. Knowledge distillation and 8-bit
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quantisation can compress the 300 M-parameter encoder to
~70 M without a material loss of Fi, enabling single-GPU
inference at <15 ms per asset.

Prompt tuning. Domain-adaptive prefix-tuning lets us
update the sentiment encoder monthly with ~1 % of full
pre-training compute, mitigating domain drift.

Slippage and liquidity. Back-tests assume fixed 3 bp
costs; a production system must model impact via a nonlinear
volume-weighted function and route orders through a
smart-order router (SOR).

Risk and compliance. We embed SHAP explanations
in the order-management system (OMS) so each trade links
to top-5 contributing tokens. A model-risk-management
(MRM) dashboard tracks performance decay, drift plots and
concept-shift alarms.

Scalability. Batching per-asset inferences and caching
shared news embeddings reduce latency spikes when macro
events release.

6 CONCLUSION AND FUTURE
RESEARCH DIRECTIONS

Using 2004-2024 cross-asset data we build an
LLM-augmented prediction framework and benchmark it
against mainstream ML and econometric models. LLM
semantic vectors boost Fi1 and ROC-AUC, and their trading
signal yields higher IR/SR after costs. Advantages persist
across assets, volatility states and text lags, and SHAP +
attention satisfy basic explainability[41-43].

Theoretical contribution. We quantify the marginal
predictive gain of LLMs under a unified pipeline and
demonstrate a gated-attention design balancing accuracy and
class balance[44].

Practical implication. LLM-driven sentiment factors
can enhance short-cycle strategies, and compression +
explainability enable deployment in compute- and
compliance-constrained environments[45].

Limitations. (1) Only first 256 tokens may omit
information in longer documents; (2) fixed 3 bp costs ignore
liquidity differences; (3) inference latency and hardware costs
need fuller quantification.

Future work. (1) Longer-context encoders or chunked
attention for regulatory filings; (2) embed LLM factors in
multifactor risk models with momentum, value and quality;
(3) live broker-API execution to model dynamic impact; (4)
multimodal Transformers merging supply-chain graphs and
order-book depth[46-47].

LLMs show strong potential in asset-return prediction
and broader quantitative research. Continuous data growth
and algorithmic optimisation may position LLM-driven
multimodal systems as a cornerstone of next-generation
investing.
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