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1 INTRODUCTION 

This study is conducted in collaboration with a machine 

learning vendor for a cryptocurrency investment firm. The 

client has specified that the portfolio should be exclusively 

used to trade the following five cryptocurrencies: Bitcoin, 

Ethereum, Ripple (XRP), Litecoin, and Chainlink, along with 

their derivatives. The derivatives include futures, options on 

futures, and perpetual swaps. The buying and selling 

activities are financed through the repo of the firm's holdings 

in U.S. Treasuries, which are considered risk-free assets. 

Regular portfolio rebalancing is also required. 

Past research efforts are mainly focused on arbitrary or 

profit taking strategies of cryptocurrency. There are 

numerous efforts investigating risk-free market instruments 

like US treasuries. However, there is no effort to discuss a 

balanced portfolio of risk assets of cryptocurrencies and risk-

free assets of US treasuries. In this study, we would like to 

present a pioneer effort of implementing contrastive deep 

learning strategies in a balance portfolio of US treasuries and 

cryptocurrencies. 

We will run solution approaches in different market 

conditions. Portfolio performance will be evaluated in terms 

of cumulative return, Sharpe ratio and Sortino ratio. 

 

 

2 LITERATURE REVIEW 

2.1 CRYPTOCURRENCY PORTFOLIO 

MANAGEMENT 

In the current financial market, portfolio optimization is 

one of the objectives to maximize returns of a portfolio [1]. 

A common strategy is called strategic asset allocation (SAA) 

that attempts to balance risks and returns with different 

weightages for target asset allocation.  

Other than cryptocurrency physical coin product, we 

often rely on cryptocurrency derivatives to hedge the risk of 

crypto trading, the most used ones include future, options and 

swaps. Perpetual swap provides high leverage, and the 

trading is based on over-the-counter trading [2]. A 

cryptocurrency perpetual swap is a type of derivative contract 

that allows traders to speculate on the price movements of 

cryptocurrencies without actually owning the underlying 

asset. Unlike traditional futures contracts, perpetual swaps do 

not have an expiry date, meaning traders can hold their 

positions indefinitely as long as they maintain the necessary 

margin. To keep the swap price close to the spot price, 

perpetual swaps use a funding rate mechanism. This periodic 

payment between buyers and sellers is based on the difference 

between the perpetual contract price and the spot price. 

Perpetual swaps often offer high leverage, allowing traders to 

control a large position with a relatively small amount of 

capital. Traders can trade on margin, which means they can 

borrow funds to increase their position size. 
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The BitMEX XBTUSD perpetual swap is a highly 

traded derivative product that enables traders to speculate on 

the price of Bitcoin (XBT) relative to the US Dollar (USD) 

without the need to own underlying asset. For traders taking 

a long position, the underlying asset is Bitcoin. These traders 

anticipate that the price of Bitcoin will rise against the US 

Dollar. When this happens, the value of their long position 

increases, resulting in a profit. However, if the price of 

Bitcoin falls, the trader experiences a loss. Conversely, 

traders holding a short position also have Bitcoin as their 

underlying asset, but they expect the price of Bitcoin to 

decline against the US Dollar. When the price drops, the 

value of the short position rises, and the trader profits. If the 

price of Bitcoin increases, the trader incurs a loss. 

2.2 MACHINE LEARNING FOR CRYPTOCURRENCY 

[3] summarize all past literature on the application of 

machine learning in cryptocurrency research. [4] discuss the 

use of Random Forest and LSTM for cryptocurrency price 

predictions. 

[5] investigates the time-series data modelling which 

extends from [6] [7]. Deep Reinforcement Learning is an 

approach that continuously learns from interactions to 

optimize the result. [8] proposes a deep Q-learning portfolio-

management framework. Four cryptocurrencies are studies in 

the portfolio and the authors achieve the expected result. It 

has a local agent for assets and a global agent for global 

rewards.   [9] designs a crypto portfolio management system 

from a deep neural network. [10] [11] combines LSTM 

models and reinforcement learning algorithms for 

cryptocurrency portfolio optimization. The algorithm is 

tested with a portfolio mixed with traditional commodity 

assets like SPY, wheat, WTI and gold. It does not include 

risk-free asset like US Treasuries. [12] proposes a 

Convolutional Neural Network (CNN) and Fully-Connect 

Neural Network (FCNN) approach for cryptocurrency 

portfolio management, which are by far the most popular 

approaches. However, none of those literatures above works 

on crypto derivatives like crypto futures, swaps and options. 

None of them investigates portfolios that need balance crypto 

instruments with risk-free-assets. 

Most of those proposed approaches are not working 

well with cryptocurrency derivatives products. [13] [14] [15] 

propose attention LLM enlightens us to pursue positive and 

negative attention pairs like those used in contrastive learning. 

Contrastive learning is an instance-wise discriminative 

approach that aims at making similar instances closer and 

dissimilar instances far from each other in representation 

space [10]. The actual representation of the contrastive 

learning elements can be in generative AI form [16] or 

another standard readable format. 

2.3 CONTRASTIVE LEARNING 

Contrastive learning aims to learn representations by 

comparing similar and dissimilar pairs of data. In the context 

of portfolio management, this could involve learning to 

distinguish between different market conditions, asset 

correlations, or other relevant features. Contrastive learning 

is necessary because the same economic indicator can suggest 

different market conditions depending on the context. For 

instance, before the Federal Reserve decides to lower interest 

rates, a non-farm payroll report that falls short of expectations 

might boost the cryptocurrency market (leading to an increase 

in crypto values). However, after the Fed has already cut 

interest rates, a similar disappointing payroll report might 

discourage investment due to fears of an impending economic 

crisis. 

2.4 REPO RATE AND RISK-FREE-ASSET 

In our studied case, portfolio managers use US 

treasuries in the portfolio as collateral to fund the buy and sell 

of cryptocurrencies and their derivatives. This process is 

illustrated in [17]. Repo rates are usually reported daily based 

on actual transactions in the repo market. They can be 

published by financial data providers or central banks. Some 

organizations or financial institutions might calculate a 

benchmark overnight repo rate by averaging rates across 

multiple transactions or participants.  Repo rates can vary 

based on market conditions, the quality of the collateral, and 

the term of the agreement. Rates can be obtained from 

financial market data providers or through direct quotes from 

financial institutions. The quality of the U.S. Treasury note as 

collateral can affect the repo rate you receive. Higher quality 

(e.g., shorter maturity, higher credit rating) can lead to better 

repo rates. The repo market is typically very liquid, but rates 

can fluctuate based on market supply and demand. Ensure 

you use up-to-date market rates for accurate cost calculations. 

3 METHODOLOGY 

Before we come to the actual deep learning model that 

we are going to apply, we first introduce some operational 

basics in the first two subsection. 

3.1 REPO RATE AND FUNDING OF CRYPTO 

TRADING 

Using U.S. Treasuries to fund cryptocurrency cash, 

derivatives like perpetual swaps involves leveraging the 

liquidity and creditworthiness of Treasuries in repurchase 

agreements (repos) to secure financing. In a repo transaction, 

Treasuries are used as collateral to borrow funds, which can 

then be employed to buy or sell cryptocurrency perpetual 

swaps. The repo market is highly liquid, allowing for 

favorable rates due to the high quality of Treasuries as 

collateral. This approach provides low-cost financing and 

flexibility, enabling quick access to funds. 

The cost of funding through repos is influenced by U.S. 

Treasury yields. Repo rates are closely tied to short-term 

interest rates, which often track Treasury yields. Lower 

Treasury yields typically result in lower repo rates, reducing 
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the cost of financing. Changes in the yield curve can impact 

repo rates; for example, a steepening yield curve might 

indicate rising short-term rates, increasing the cost of repo 

financing. Additionally, rising Treasury yields due to 

expectations of higher interest rates may signal tighter 

monetary policy, potentially affecting funding costs. 

In cryptocurrency markets, funding rates are crucial, 

particularly in perpetual swaps. Positive funding rates, where 

long positions pay short positions, can increase the cost of 

holding long positions, while negative rates provide cost 

benefits. Differences between spot prices and perpetual swap 

prices, influenced by funding rates, create arbitrage 

opportunities that can be exploited using repo-financed 

capital. Balancing a portfolio between crypto derivatives and 

U.S. Treasuries involves managing risk and return. Treasuries 

provide stability and predictable yields, while 

cryptocurrencies offer higher returns but with greater 

volatility. Evaluating yield spreads between crypto yields and 

Treasury yields helps in determining asset allocations. A 

wider spread in favor of crypto might justify higher 

allocations despite the increased risk. 

3.2 PERFORMANCE MEASUREMENT 

Hedging strategies are essential for managing risks 

associated with interest rate movements and cryptocurrency 

volatility. Interest rate futures or swaps can hedge against 

adverse movements in Treasury yields that affect repo 

financing costs. Options and futures can hedge against crypto 

price volatility, balancing risk exposure between crypto and 

risk-free portfolio components. A diversified portfolio 

strategy might involve investing a portion in Treasuries to 

provide stable income and liquidity through repos while 

allocating funds to cryptocurrencies and perpetual swaps to 

capture higher returns and exploit arbitrage opportunities. 

Yield management involves continuously monitoring 

the yield environment and adjusting allocations based on 

changes in Treasury and crypto yields. Dynamic rebalancing 

using machine learning or quantitative models can help 

respond to market conditions, yield spreads, and funding 

costs. Risk management through diversification across 

different cryptocurrencies and Treasury maturities is crucial, 

alongside leverage control to avoid margin calls in volatile 

markets. By leveraging Treasuries for repo financing, 

investors can engage in cryptocurrency perpetual swap 

trading with competitive funding rates. Managing the 

interaction between Treasury yields and cryptocurrency 

yields is vital for optimizing funding strategies and balancing 

the risk-reward profile of a mixed portfolio of crypto 

derivatives and risk-free assets. Implementing a dynamic, 

data-driven approach to portfolio management can help adapt 

to evolving market conditions and achieve optimal returns. 

performance measurement 

Evaluating the performance of a balanced portfolio that 

includes cryptocurrencies, crypto derivatives, U.S. Treasuries, 

and Treasury derivatives involves several key metrics that 

help assess the risk, return, and overall efficiency of the 

portfolio. These metrics are essential for understanding how 

well the portfolio performs relative to its goals and market 

benchmarks. 

Return metrics, such as total return and annualized 

return, provide a measure of the overall gain or loss of the 

portfolio over a specific period. Total return includes capital 

appreciation and income from interest or dividends, while the 

annualized return represents the geometric average annual 

return, making it easier to compare with other investments. 

Risk metrics are crucial for understanding the volatility 

and downside potential of the portfolio. Volatility, measured 

by standard deviation, indicates the dispersion of returns 

around the mean, with higher volatility suggesting greater 

risk. Downside risk focuses on the potential for negative 

returns, capturing only the volatility of returns below a 

specified threshold or minimum acceptable return. 

Risk-adjusted return metrics help evaluate how well the 

portfolio compensates for the risks taken. The Sharpe Ratio 

(Eq. 1) measures the portfolio's return relative to its risk by 

dividing the excess return (above the risk-free rate) by the 

standard deviation. A higher Sharpe Ratio indicates better 

risk-adjusted performance. The Sortino Ratio (Eq. 2), similar 

to the Sharpe Ratio, considers only downside risk and 

provides a clearer picture of how well the portfolio 

compensates for adverse movements.  

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑅𝑒𝑡𝑢𝑟𝑛−𝑅𝑖𝑠𝑘 𝐹𝑟𝑒𝑒 𝑅𝑎𝑡𝑒

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
 (1) 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑟𝑎𝑡𝑖𝑜 =
Portfolio Return− Risk Free Rate

Downside Vol𝑎𝑡𝑖𝑙𝑖𝑡𝑦
 (2) 

Diversification metrics, such as the correlation matrix, 

analyze the correlation between different asset classes within 

the portfolio. Low or negative correlations indicate effective 

diversification, reducing overall portfolio risk. Beta measures 

the portfolio's sensitivity to market movements; a beta less 

than one suggests less volatility than the market, while a beta 

greater than one indicates more volatility. 

Yield metrics are important for income-generating 

portfolios. Current yield reflects the income generated by the 

portfolio as a percentage of the current value, particularly 

relevant for assets like Treasuries. A yield spread compares 

the yield of the portfolio’s fixed-income components to 

benchmarks, such as the yield on Treasury bills or other 

government bonds, providing insights into the portfolio's 

income-generating efficiency. 

Portfolio efficiency metrics, like the information ratio, 

compare the portfolio’s excess return over a benchmark to the 

tracking error, indicating the manager’s ability to generate 

alpha. Jensen’s Alpha measures the excess return of the 

portfolio over the expected return based on the portfolio’s 

beta and the market return, assessing the manager's skill in 

generating returns above the market. 
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Applying these metrics to portfolio analysis helps 

investors gain a comprehensive understanding of the 

performance of a balanced portfolio. For example, suppose a 

portfolio has an annualized return of 12%, with a volatility of 

15%. The Sharpe Ratio is 0.8, and the Sortino Ratio is 1.2, 

indicating relatively good risk-adjusted performance with 

more emphasis on downside protection. If the correlation 

between cryptocurrencies and Treasuries is low, this suggests 

effective diversification, reducing overall risk. Additionally, 

if the yield on Treasuries in the portfolio is higher than 

comparable benchmarks, this indicates favorable yield 

positioning. 

3.3 MODEL ASSUMPTIONS 

We assume to have a fixed allocation among four 

different types of assets allowed in this portfolio. The target 

allocation for cryptocurrency, crypto derivatives, US treasury 

and US treasury derivatives in percentage are p1, p2, p3 and 

p4 respectively. We have a rebalance threshold of 0.10 as 

required by the business.  

Among all the holdings in this portfolio, cryptocurrency 

perpetual swap has a funding interval every 8 hours.  i.e. the 

funding rate payments are generally exchanged at regular 

intervals, commonly every 8 hours. This is standard across 

different types of cryptocurrency perpetual swaps, including 

Bitcoin, Ethereum, Ripple (XRP), Litecoin, and Chainlink. 

The common exchange time are: 04:00 UTC, 12:00 UTC, and 

20:00 UTC. Therefore, our rebalance occurred 3 times a day 

during US treasury bond trading day. 

Despite the many different type of cryptocurrencies in 

the market, our portfolio only hold the following five type to 

keep the problem simplified: Bitcoin, Ethereum, Ripple 

(XRP), Litecoin, and Chainlink.  

3.4 DEEP Q-LEARNING 

ALGORITHM 1. DEEP Q-LEARNING ALGORITHM 

Initialize replay buffer 

Initialize action-value function Q with random weights θ 

Initialize target action-value function Q' with weights θ' = θ 

Set contrastive learning network with shared layers for 

representation learning 

Initialize repo rate model 

Define target allocations: 

    target_crypto = p1 

    target_crypto_derivatives = p2 

    target_treasuries = p3 

    target_treasury_derivatives = p4 

Set rebalance threshold w = 0.10 

for each episode do 

    Initialize state s 

    for each step, in episode do 

        With probability ε select a random action a 

        Otherwise select a = argmax_a' Q(s, a'; θ) 

 

        Execute action a in the environment 

        Observe reward r and next state s' 

 

        Calculate current portfolio allocations, update: 

            current_crypto  

            current_crypto_derivatives  

            current_treasuries  

            current_treasury_derivatives  

 

        Check if rebalancing is needed: 

          if |current_crypto - target_crypto| > w  

or  

|current_crypto_derivatives - target_crypto_derivatives| > w  

                or 

         |current_treasuries - target_treasuries| > w  

                or 

      |current_treasury_derivatives - target_treasury_derivatives| > w  

then 

                Perform rebalancing: 

                    Sell overweighted assets 

                    Buy underweighted assets 

                    Adjust repo positions accordingly 

 

        Calculate financing cost: 

            repo_cost = repo_rate * amount_financed 

 

        Adjust reward for repo cost: 

            r_adjusted = r - repo_cost 

 

        Store transition (s, a, r_adjusted, s') in replay buffer 

 

        Sample random batch of transitions (s_j, a_j, r_j, s'_j) from 

replay buffer 

        Compute Q-learning loss: 

            L_Q = 1/N Σ_j [(r_j + γ * max_a' Q'(s'_j, a'; θ') - Q(s_j, a_j; 

θ))^2] 

 

        Perform contrastive learning: 

            Sample pairs of states (s_j, s_k) from the replay buffer 

            Compute contrastive loss: 

                if s_j and s_k are similar (e.g., same market condition): 

                    L_C = ||f(s_j; θ) - f(s_k; θ)||^2  // Minimize distance 

for similar pairs 

                else: 

                    L_C = max(0, margin - ||f(s_j; θ) - f(s_k; θ)||)^2  // 

Maximize distance for dissimilar pairs 

 

        Combine losses: 

            L_total = L_Q + λ * L_C 

 

        Update network weights θ using ∇_θ L_total 

 

        Periodically update target network: 

            θ' = θ 

 

        Set state s = s' 

    end for 

end for 

 

The key hyperparameters for Deep Q-Learning play a 

crucial role in shaping the learning process and include 

several important factors. The learning rate (α) determines 

how quickly the neural network updates the Q-values when 

receiving new information, with lower values leading to 

smaller updates and higher values causing larger adjustments. 

The discount factor (γ) balances the importance of future 

versus immediate rewards, where a value closer to 1 
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prioritizes future rewards and a lower value emphasizes 

short-term gains. The exploration rate (ε) manages the trade-

off between exploring new actions and exploiting known 

strategies, with higher values encouraging exploration and 

lower values favoring exploitation. This exploration rate 

often decays over time, controlled by the exploration decay 

rate, which reduces exploration as the model learns more 

about the environment. 

In addition to these, the batch size defines how many 

past experiences are sampled from the replay buffer to update 

the Q-network during training. The replay buffer size 

determines how many past experiences the model stores and 

samples from, ensuring efficient learning. Another important 

hyperparameter is the target network update frequency, 

which dictates how often the target Q-network is updated 

with the weights of the online Q-network, providing stability 

in learning. The number of episodes and maximum steps per 

episode set the length of training, with episodes defining the 

total learning duration and the step limit ensuring the agent 

doesn’t get stuck in an infinite loop within an episode. 

Together, these hyperparameters shape the behavior and 

performance of the Deep Q-Learning model in optimizing 

decision-making. 

Incorporating a rebalancing strategy into the Deep Q-

Learning framework with repo funding involves creating a 

mechanism to adjust the portfolio allocations when they 

deviate from the target due to market movements. This 

strategy ensures that the portfolio remains aligned with the 

desired risk-return profile, even when using leverage through 

repos. 

3.5 CONTRASTIVE LEARNING 

The key for contrastive learning as mentioned in Section 

2.3 is the reply buffer and Q-learning loss. The replay buffer 

stores experiences (state, action, reward, next state) to sample 

batches for training. This is crucial for stabilizing Q-learning 

by breaking the correlation between consecutive experiences. 

Q-Learning Loss (L_Q) is the standard loss function for Q-

learning, which aims to minimize the difference between 

predicted Q-values and target Q-values calculated from 

rewards and next states. 

State Pair Sampling is performed independent of 

trading every eight-hour period to be consistent with the cash 

flow exchange. States are sampled in pairs to determine 

whether they are similar (e.g., similar market conditions) or 

dissimilar. If bitcoin value increases in this period, we will 

create a contra-state pair (which has a negative outcome 

utility for market decrease). 

The contrastive loss function (L_C) encourages the 

model to learn representations that are close for similar states 

and far apart for dissimilar states. This is typically done using 

distance metrics, such as Euclidean distance, and applying a 

margin to distinguish between similar and dissimilar pairs. 

The total loss (L_total) combines the Q-learning loss 

and contrastive loss, where λ is a hyperparameter that 

balances the influence of contrastive learning. This helps the 

network to simultaneously learn effective Q-values and 

meaningful state representations. 

Network Updates: The neural network is updated using 

the combined loss, which involves backpropagating the 

gradients and adjusting weights to minimize the total loss. A 

separate target network, with weights θ', is used to stabilize 

training. The target network's weights are periodically 

updated to match the primary network. 

The contrastive learning step produces a learning set 

and an opposite contrastive set each time and is fed to the Q-

network. This is a crucial step to add-in critical training 

condition compared to other approaches. 

3.6 PORTFOLIO REBALANCE GENERAL FLOW 

The general flow structure for our system is as follows. 

We generated the contrastive training set (as shown in section 

3.5) periodically and feed to the Q-learning network. The 

training set is supplied from trading records, as well as 

market/sentiment update. Not only each individual buy/sell 

action will become training set to Q network, but portfolio 

managers in this studied case also often conduct periodic 

review of their holdings and past trading activities. Successful 

(positive learning elements) and unsuccessful trades 

(contrastive learning elements) from the periodic review will 

also be formatted as training elements for Q-network. 

 

Similar to [1], we define the net asset value (NAV) 

reward as in Eq. (3): 

𝑅𝑒𝑤𝑎𝑟𝑑 =
𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
 (3) 

After each rebalance of the portfolio, updated training 

data with construction of contrastive set and market 

trend/sentiment update is feedback to Q-network. We are 

conducting periodic portfolio rebalancing, not the dynamic 

type introduced in [1].  

3.7 PROXIMAL POLICY OPTIMIZATION (PPO) 

Figure 1. FLOWCHAT FOR Q LEARNING UPDATE 
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Reinforcement Learning (RL) is a type of machine 

learning where an agent learns to make decisions by 

interacting with an environment. In the context of trading 

strategies, such as predicting and trading cryptocurrency 

perpetual swaps, RL can be used to develop adaptive 

strategies that evolve based on changing market conditions. 

One popular RL algorithm is Proximal Policy Optimization 

(PPO). PPO is a type of policy gradient method used in 

reinforcement learning. It aims to optimize the policy (the 

strategy that dictates how actions are chosen based on states) 

in a way that balances exploration and exploitation while 

ensuring stable learning. 

The key concept of PPO revolves around optimizing the 

policy to maximize cumulative rewards. The policy itself is a 

function that maps states to actions, guiding the agent's 

decision-making process. The advantage function plays a 

crucial role by measuring how much better or worse a 

particular action is compared to the average action in a given 

state. To ensure stable learning, PPO employs a clipped 

objective function, which prevents policy updates from 

deviating too significantly from the previous policy, thereby 

promoting controlled, incremental improvements. 

When applying PPO to trading strategies, the first step 

is to define the trading environment. This involves creating 

an environment that accurately simulates the trading scenario, 

including various components such as the state space, action 

space, and reward function. The state space represents 

features of the market, such as price, volume, and funding 

rates, that provide the necessary inputs for decision-making. 

The action space encompasses the possible actions the trading 

agent can take, including buying, selling, or holding a 

position. Finally, the reward function is designed to measure 

trading performance, typically in terms of profit or loss, thus 

guiding the agent to optimize its strategy for maximum 

returns. 

ALGORITHM 2. PROXIMAL POLICY OPTIMIZATION 

Initialize actor network π with weights θ 

Initialize critic network V with weights φ 

Initialize repo rate model 

 

Define target allocations: 

    target_crypto = p1 

    target_crypto_derivatives = p2 

    target_treasuries = p3 

    target_treasury_derivatives = p4 

 

Set rebalance threshold = 0.10 

Set clip parameter ε for PPO 

Set discount factor γ 

Set learning rates for actor and critic 

 

for each episode do 

    Initialize state s 

    for each step in episode do 

        Select action a based on policy π(a|s; θ) 

 

        Execute action a in the environment 

        Observe reward r and next state s' 

 

        Calculate current portfolio allocations: 

            current_crypto = current_value(crypto) / 

total_portfolio_value 

            current_crypto_derivatives = 

current_value(crypto_derivatives) / total_portfolio_value 

            current_treasuries = current_value(treasuries) / 

total_portfolio_value 

            current_treasury_derivatives = 

current_value(treasury_derivatives) / total_portfolio_value 

 

        Check if rebalancing is needed: 

            if |current_crypto - target_crypto| > rebalance_threshold or 

               |current_crypto_derivatives - target_crypto_derivatives| > 

rebalance_threshold or 

               |current_treasuries - target_treasuries| > 

rebalance_threshold or 

               |current_treasury_derivatives - 

target_treasury_derivatives| > rebalance_threshold then 

 

                Perform rebalancing: 

                    Sell overweighted assets 

                    Buy underweighted assets 

                    Adjust repo positions accordingly 

 

        Calculate financing cost: 

            repo_cost = repo_rate * amount_financed 

 

        Adjust reward for repo cost: 

            r_adjusted = r - repo_cost 

 

        Store transition (s, a, r_adjusted, s') in memory 

    end for 

    Calculate advantages A for each transition: 

        A(s, a) = Σ_t' [r_t' + γ * V(s_t'+1; φ) - V(s_t'; φ)] 

 

    Update actor network π: 

        Sample batch of transitions (s, a, A) from memory 

        for each transition in batch do 

            Compute ratio ρ: 

                ρ = π(a|s; θ) / π_old(a|s; θ) 

 

            Compute actor loss L_actor: 

                L_actor = -min(ρ * A, clip(ρ, 1-ε, 1+ε) * A) 

 

        Update θ using ∇_θ L_actor 

    Update critic network V: 

        Sample batch of transitions (s, r_adjusted) from memory 

        Compute critic loss L_critic: 

            L_critic = (V(s; φ) - r_adjusted)^2 

 

        Update φ using ∇_φ L_critic 

 

    Update policy parameters π_old = π 

 

end for 

First, the actor network (π) is initialized with specific 

weights (θ), while the critic network (V) is initialized with its 

respective weights (φ). A repo rate model is also initialized. 

Portfolio allocation targets are defined. 

During each episode, the agent selects an action based 

on the policy, executes the action, and receives a reward. The 

portfolio allocations are then recalculated, and if any asset 

class deviates from its target allocation by more than the set 
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threshold, a rebalancing action is triggered. Overweighted 

assets are sold, underweighted assets are purchased, and repo 

positions are adjusted accordingly. The repo cost is calculated 

and used to adjust the reward, which is stored in memory. 

Advantages are calculated for each transition to 

determine the benefits of the actions compared to the 

estimated value. The actor network is updated using the 

probability ratio (ρ) between the new and old policies, and the 

critic network is updated with adjusted rewards to refine the 

value estimates. The old policy is periodically updated to 

match the new policy. 

The key components of this approach revolve around 

network initialization, rebalancing strategy, repo funding, 

advantage calculation, and updates to the actor and critic 

networks. First, the actor network is tasked with determining 

the policy that guides actions, while the critic network 

evaluates the value of these actions. The rebalancing strategy 

compares the current portfolio allocations to target 

allocations and initiates rebalancing actions when deviations 

exceed a predetermined threshold. Repo funding is factored 

into the process by calculating the repo costs and adjusting 

rewards, accordingly, ensuring that financing costs are 

reflected during optimization. The advantage calculation is 

then used to evaluate how well an action performs relative to 

the estimated value. Finally, updates are made to both the 

actor and critic networks: the actor network is refined using a 

clipped objective to ensure stable learning, while the critic 

network is updated based on adjusted rewards to help the 

system learn to estimate long-term value. 

This process ensures that the PPO framework 

dynamically adjusts to market movements, financing costs, 

and risk-return profiles while managing the balance between 

leverage and rebalancing strategies, ultimately keeping the 

portfolio aligned with investment objectives. 

3.8 DIFFERENCE BETWEEN Q-LEARNING AND 

PPO 

Deep Q-Learning and Proximal Policy Optimization 

(PPO) are two popular reinforcement learning algorithms 

with fundamental differences in their approach to decision-

making and optimization, particularly in the context of 

managing a crypto-risk-free asset portfolio. Deep Q-Learning 

is a value-based method that focuses on learning a Q-value 

function, which estimates the expected return of taking a 

certain action in a given state and following the optimal 

policy thereafter. It is best suited for problems with discrete 

action spaces, as it requires calculating Q-values for each 

possible action. The agent selects actions based on these Q-

values using an epsilon-greedy strategy to balance 

exploration and exploitation. 

On the other hand, PPO is a policy-based method that 

directly learns a policy function, which maps states to actions 

by optimizing the expected return. It maintains a stochastic 

policy, allowing for exploration by sampling actions from a 

probability distribution. This makes PPO more flexible for 

complex decision-making problems as it can handle both 

continuous and discrete action spaces. 

In terms of optimization and stability, Deep Q-Learning 

relies on the Bellman equation to iteratively update Q-values. 

This can lead to instability in certain environments due to the 

correlation between Q-value updates and policy changes, 

which is mitigated by using experience replay to improve 

stability and convergence. PPO, however, uses a clipped 

surrogate objective function that penalizes large deviations 

from the current policy, improving training stability. It often 

employs Generalized Advantage Estimation (GAE) to 

compute more accurate advantage estimates, leading to more 

efficient learning. 

When considering sample efficiency and exploration, 

Deep Q-Learning can be less sample-efficient, especially in 

high-dimensional state spaces, because it relies heavily on 

exploring various state-action pairs to learn accurate Q-values. 

Its epsilon-greedy strategy for exploration can be less 

effective in environments with large or continuous action 

spaces. PPO, in contrast, tends to be more sample-efficient 

due to its policy-based nature, as it directly optimizes the 

policy using sampled trajectories. Its stochastic policy 

representation inherently encourages exploration, which can 

lead to better exploration in complex environments. 

In the context of the crypto-risk-free portfolio problem, 

Deep Q-Learning may be suitable if the portfolio 

management decisions can be discretized into specific actions, 

such as discrete rebalancing percentages or binary decisions 

to buy or sell specific assets. However, it may struggle with 

the complexity and continuous nature of financial markets 

and portfolios, especially when considering continuous 

leverage adjustments and dynamic rebalancing. PPO, with its 

ability to handle continuous decision-making and more 

complex action spaces, is generally more suitable for this 

problem. It can adjust leverage, rebalance continuously, and 

optimize both risk and return in a dynamic environment. Its 

stability and capability to handle continuous action spaces 

make it a better fit for managing portfolios where precise 

adjustments are needed to optimize the portfolio’s risk-return 

profile. 

In summary, while both Deep Q-Learning and PPO can 

be applied to managing a crypto-risk-free portfolio, PPO is 

generally more effective due to its ability to handle 

continuous action spaces, improved sample efficiency, and 

robust policy optimization, making it more adept for dynamic 

portfolio management where decisions involve adjusting 

allocations and leverage continuously in response to changing 

market conditions. 

4 RESULT DISCUSSION 

The hypothesis for the study is: each portfolio can only 

buy any of the five cryptocurrencies and its derivatives; it is 

not allowed to buy/sell cryptocurrency outside of the five 
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cryptocurrencies.  

Portfolio performances are evaluated using Sharpe ratio 

and Sortino ratio. Sharpe ratio evaluates the portfolio's return 

relative to its risk by dividing the excess return (above the 

risk-free rate) by the standard deviation. A higher Sharpe 

ratio indicates better risk-adjusted performance. Sortino ratio 

is similar to the Sharpe ratio but considers only downside risk. 

It divides the excess return by the downside deviation, 

providing a clearer picture of how well the portfolio 

compensates for adverse movements. The detailed 

comparison of Sharpe ratio and Sortino ratio can be found in 

[18]. All risk-free rates are obtained from [19]. For 

cryptocurrency and its derivatives price are downloaded from 

Yahoo Finance.   

We compare our solution with result applied to CNN 

model [12], and the FCNN model [12] introduced in the same 

paper. The combined LSTM models and reinforcement 

learning algorithms from [11] is also added into comparison, 

we denote it as LSTM-RL. Our training data mainly comes 

from 2020 and 2021, and we monitored the portfolio 

performance in 2022 and 2023 for comparison among 

methodologies that we are interested in this study. We use the 

parameter discussed in section 3.4 and 3.7 for our algorithm 

Q-Learning, Q-Learning-CL, PPO and PPO-CL, unless 

otherwise mentioned. The Deep-Q Learning and PPO models 

are implemented in Python using PyTorch and trained on an 

Intel i9 CPU with an RTX 4090 GPU. The training was 

conducted with a progressive learning rate adaptation strategy 

over 32 epochs, focusing on training the trading actions with 

market sentiment change.  

Now we test our algorithm with CNN, DNN and LSTM-

RLM for a portfolio of BTC, ETH, US treasury and their 

derivatives. Q-Learning-CL denotes the Q-Learning 

algorithm with contrastive learning. PPO-PL denotes the PPO 

algorithm with contrastive learning.  The portfolio manager 

are permitted to execute both long and short orders for the 

portfolio. 

In 2022, the bitcoin index had a negative return of -

64.24% [20]. However, most strategies can still make some 

profit through short the current position through 

cryptocurrency derivatives. Table 1 show that PPO with 

contrastive learning can achieve a return of 40.21% through 

good prediction of the downward market trend. The LSTM 

reinforcement learning had the worst performance with a 

negative return of 7.14%. The result of CNN and DNN 

achieves 4.72% and 2.49% return of investment. The two 

deep learning methods: Q-Learning and PPO show promising 

results with 4.65% and 28.12% return over 2022.  

TABLE 1. 2022 PORTFOLIO PERFORMANCE 

 Cumulative 

Return 

Sharpe 

Ratio 

Sortino 

Ratio 

CNN 4.72% -1.70 -2.254 

DNN 2.49%  -5.188 -6.008 

LSTM-RL -7.14% -5.518 -6.186 

Q-Learning 4.65% -4.920 -5.592 

Q-Learning-CL 10.97% -3.361 -5.093 

PPO 28.12% -4.328 -4.042 

PPO-CL 40.21% -2.577 -3.443 

 

Q-learning can perform well in environments where the 

portfolio adjustments are limited to discrete decisions, such 

as rebalancing between a few selected assets or choosing 

specific trading signals. In February and March 2023, where 

the market is facing the fear of economic crisis triggered by 

the collapse of Silicon Valley Bank and Signature Bank, PPO 

performs better than Q-learning.  Q-Learning may also be 

more suitable in relatively stable market conditions where 

historical patterns and rewards can be relied upon to train the 

model. The decline in 2022 does not have a similar historical 

model to follow, therefore PPO performs better than Q-

Learning.  

In 2023, the bitcoin index had a positive return of 155.68% 

[20]. CNN performs best among all the algorithms we used 

for testing. When contrast learning is incorporated with Q-

Learning and PPO, they are performing better than when no 

contrast learning. Q-learning with CL is having a portfolio 

return of 18.24% in 2023, where PPO-CL is having a return 

of 39.13% for 2023. 

TABLE 2. 2023 PORTFOLIO PERFORMANCE 

 Cumulative 

Return 

Sharpe 

Ratio 

Sortino 

Ratio 

CNN 44.18% 10.041 22.778 

DNN 1.37%  7.905 16.213 

LSTM-RL -0.11% 7.533 14.070 

Q-Learning 0.64% 8.007 15.742 

Q-Learning-CL 18.24% 8.656 17.846 

PPO 32.99% 10.404 21.689 

PPO-CL 39.13% 10.520 26.023 

 

Q-Learning is best suited for simpler, discrete decision 

environments where trading actions are limited and 

predictable, leading to potentially better ROI in stable 

markets. PPO is more effective in dynamic, complex 

environments with continuous decision-making, leading to 

potentially better ROI and higher Sharpe ratios in volatile 

markets. 

5 CONCLUSION AND FUTURE 

DIRECTION 

In this paper, we explore the integration of contrastive 

learning with Deep Q-Learning and Proximal Policy 

Optimization (PPO) for managing a balanced portfolio 

consisting of five major cryptocurrencies—Bitcoin, 

Ethereum, Ripple (XRP), Litecoin, and Chainlink—and U.S. 

Treasuries. The combined approach demonstrated superior 

performance over traditional methods in both downward and 

upward cryptocurrency markets. In the bear market of 2022, 
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the strategies proved effective in mitigating losses, while in 

the bull market of 2023, they capitalized on opportunities for 

significant gains. The results suggest that incorporating 

contrastive learning with reinforcement learning techniques 

enhances portfolio management across varying market 

conditions. 

Throughout this study we don’t focus on the risk 

management perfective of a portfolio of cryptocurrency and 

risk-free-asset. Crypto derivatives are popular among 

cryptocurrency traders due to their flexibility, high leverage, 

and the ability to maintain positions without worrying about 

contract expirations. However, they also come with 

significant risks, including liquidation risk and the potential 

for significant losses due to high leverage. 

There are many alternative metrics for measuring 

portfolio performance. The methodology may be adjusted if 

those alternative metrics are applied. For example, liquidity 

metrics, such as the liquidity ratio, assess the ease with which 

portfolio assets can be converted to cash without significant 

loss of value. This is important for portfolios with crypto 

derivatives and Treasuries, which may have different 

liquidity characteristics. The turnover rate indicates the 

frequency with which assets within the portfolio are bought 

and sold, with high turnover implying increased transaction 

costs and tax implications. We could revisit the portfolio 

management for cryptocurrency and US treasuries with the 

above metrics and re-evaluate all the methodologies to cater 

for those metrics. 
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