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Abstract: With the rapid development of smart manufacturing technologies, automated production has become an important 

trend in the transformation of the industrial chain. Among various automation applications, robotic arm grasping and visual 

inspection systems are the most widely used. This paper focuses on unstructured stacking scenarios and workpiece defect 

detection, and designs two deep learning-based vision systems. In terms of theoretical research, the study focuses on the 

fundamental knowledge and technical methods related to robotic arm grasping in unstructured environments and workpiece 

defect detection. To address the issue of grasping randomly stacked objects, a 2D/3D vision-based robotic arm grasping 

solution is proposed. This solution employs an eye-in-hand configuration, where RGB and depth images are captured by a 

stereo camera, and a depth feature extraction branch is added to the Mask R-CNN network to improve the accuracy of object 

detection and segmentation in complex scenes. For object localization, the segmented results are mapped to a 3D point cloud 

through RGB-D data registration, and the RANSAC and PCA algorithms are used to extract the target plane and bounding 

box, thereby obtaining the 6D pose information of the target. Combined with the hand-eye calibration results, the robotic arm 

can accurately grasp the target. Additionally, taking an automotive one-way clutch as an example, an automated defect 

detection system based on deep learning is designed. Using an industrial camera to capture images, the system utilizes a 

semantic segmentation network and a defect classification network to detect the number of teeth, copper sleeve, semicircular 

piece, and chamfer of the one-way clutch, thereby achieving automatic recognition of part defects. This paper integrates 2D 

image and 3D point cloud information, combined with deep learning methods, to explore robotic arm grasping and workpiece 

detection, providing new ideas and solutions for the development of smart manufacturing.  
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1 INTRODUCTION 

Automated industrial inspection technology is an 

indispensable component of modern industrial production, 

closely related to fields such as computer vision, sensors, 

robotics, and artificial intelligence. With the rapid growth of 

the industrial automation market, particularly in China, which 

is the world's largest industrial automation market, automated 

inspection technology plays an increasingly prominent role in 

improving product quality, production efficiency, and 

reducing costs[1]. In practical applications, robotic arm 

grasping and visual inspection are two common automated 

solutions. For unstructured stacking scenarios, traditional 

teaching-based methods fail to meet the requirements, 

necessitating the development of intelligent visual grasping 

systems that endow robots with autonomous perception and 

analysis capabilities for efficient unstructured grasping. To 

ensure product quality, more and more companies are 

adopting machine vision technology for fully automated 

inspections to detect common defects such as surface 

scratches, coating errors, and assembly errors, thereby 

improving inspection efficiency and accuracy. Automated 

industrial inspection technology is of great significance in 

enhancing product quality, production efficiency, and cost 

reduction, making it a field full of innovation and 

development opportunities. As technology continues to 

advance, automated inspection systems will be applied in a 

wider range of industrial scenarios, providing smarter, more 

efficient, and more reliable solutions for modern industrial 

production. 

2 LITERATURE REVIEW OF 

DOMESTIC AND 

INTERNATIONAL RESEARCH 

2.1 LITERATURE REVIEW ON EDUCATIONAL BIG 

DATA AND PERSONALIZED LEARNING 

In the rapid development of automated industrial 

inspection technologies, we see how technological 

advancements are driving improvements in production 

efficiency and product quality. This trend is not only evident 

in the industrial sector but also shows similar impacts in the 
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education sector. With the continuous evolution of 

information technology and the accumulation of data, the 

education sector is also undergoing a technological 

transformation. This transformation relies heavily on 

advanced data analysis technologies such as educational big 

data and personalized learning, which are rapidly changing 

traditional teaching models. Just as automated inspection 

systems enhance the accuracy and efficiency of industrial 

inspections through intelligence and data-driven methods, the 

education sector is optimizing the learning process and 

outcomes through big data and personalized teaching. 

Next, we will explore the research progress on 

educational big data and personalized learning in the context 

of educational informatization, and further understand how 

these technologies are driving transformation and innovation 

in the education field. Some studies have analyzed how to use 

machine learning methods to analyze educational big data to 

predict students' academic performance [2]. They proposed a 

modeling and training method based on student attribute data, 

which can identify key factors affecting academic 

performance and provide references for teaching 

optimization. They further explored how to use deep learning 

methods to select personalized teaching strategies [3]. By 

analyzing and modeling data on students' learning behaviors, 

cognitive levels, etc., it is possible to predict the effectiveness 

of different teaching strategies, recommend optimal learning 

paths and resource combinations for each student, and 

achieve tailored instruction. This research proposed a data-

driven personalized teaching optimization framework that 

achieved significant performance improvements in real 

teaching scenarios. 

In addition to predicting academic performance and 

selecting teaching strategies, educational big data is also used 

to analyze students' emotional states and social behaviors. For 

example, the EmotionQueen benchmark is used to evaluate 

large language models' understanding and expression of 

student emotions [4]. By analyzing the responses generated 

by the model, it is possible to measure its level of empathy 

and support emotional teaching. 

Overall, research on educational big data and 

personalized learning focuses on how to use data analysis 

technologies to uncover patterns and characteristics in 

students' learning processes, providing intelligent support for 

teaching decisions. On one hand, modeling and predicting 

data such as academic performance and learning behaviors 

can reveal key factors affecting learning outcomes and 

recommend targeted teaching strategies. On the other hand, 

analyzing data on students' emotions and social interactions 

can provide insights into students' psychological states and 

interpersonal interactions, guiding emotional teaching and 

collaborative learning. In the future, further integrating 

multimodal educational data to construct more 

comprehensive and dynamic student profiles, and achieving 

more precise and real-time personalized teaching, remains a 

valuable research direction. 

2.2 LITERATURE REVIEW ON MULTIMODAL 

LEARNING AND CROSS-MODAL ALIGNMENT 

Multimodal learning aims to leverage information from 

different modalities (such as vision, language, and audio) to 

build more comprehensive and accurate artificial intelligence 

models. However, a key challenge is how to achieve cross-

modal information alignment and integration due to 

differences in feature distributions and representations across 

modalities. For instance, multimodal preference alignment 

methods are used to address the regression issues of language 

models with visual instructions [5]. It was found that when 

visual and language information are inconsistent, models 

often suffer from overfitting and inadequate generalization. 

By incorporating techniques like adversarial learning and 

contrastive learning, features from different modalities can be 

mapped into a shared semantic space, aligning preferences 

and enhancing the robustness and generalization of the model. 

Additionally, some studies have constructed a large-scale 

scientific chart question-answering dataset, SciGraphQA, to 

evaluate model performance in cross-modal reasoning tasks 

[6]. This dataset includes numerous scientific concepts, 

entities, and relationships, requiring models to 

simultaneously understand text, images, and charts to answer 

complex questions. Such cross-modal reasoning capabilities 

are crucial for scientific education and intelligent tutoring 

systems. 

In addition to vision-language alignment, speech-text 

alignment is also a significant direction in multimodal 

learning. Chen, Y. et al. (2024) studied how to use large 

language models to assess the empathetic capabilities of 

speech assistants. By converting speech to text and analyzing 

the sentiment and semantics of the text, it is possible to 

evaluate whether the speech assistant's responses meet the 

user's emotional needs. This cross-modal emotional 

alignment plays an important role in improving the 

naturalness and friendliness of human-computer interactions. 

Research in multimodal learning and cross-modal 

alignment focuses on how to integrate and coordinate 

information from different modalities to build more 

intelligent and comprehensive AI systems. On one hand, joint 

modeling and representation learning of visual, language, and 

audio data can enable cross-modal information transfer and 

enhancement, improving the model's understanding and 

generation capabilities. On the other hand, introducing 

alignment and consistency constraints can mitigate 

differences and conflicts between modalities, enhancing the 

model's robustness and generalization. Future research will 

need to explore deeper and more granular cross-modal 

alignment by further uncovering high-level semantic 

associations between modalities while reducing 

computational and annotation costs, which remains a 

challenging research direction. 
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2.3 LITERATURE REVIEW ON THE APPLICATION 

OF INTELLIGENT OPTIMIZATION 

ALGORITHMS IN ENGINEERING 

Intelligent optimization algorithms, such as 

evolutionary algorithms and swarm intelligence algorithms, 

efficiently solve complex engineering optimization problems 

by simulating natural optimization mechanisms. In recent 

years, these algorithms have been widely applied in fields 

such as engineering design, manufacturing, and control, 

achieving significant results. 

Some studies have explored how to use an improved 

snow leopard optimization algorithm and the Inception-V4 

network to optimize the detection of diabetic retinopathy [7]. 

By adaptively adjusting algorithm parameters, the model's 

convergence speed can be accelerated and the accuracy of 

lesion area identification improved. This research 

exemplifies the combination of intelligent optimization and 

deep learning, demonstrating significant application value in 

medical image analysis. Zhang, Y. et al. (2024) investigated 

the application of BIM technology in smart buildings [8]. By 

integrating Building Information Modeling with IoT and big 

data technologies, digital management and optimization 

control throughout the building's lifecycle can be achieved. 

Intelligent optimization algorithms can be used for tasks such 

as building energy consumption analysis and equipment 

scheduling, enhancing the level of building intelligence and 

operational efficiency. 

Researchers in the aerospace field have studied how to 

use machine learning methods to predict hazardous flight 

weather conditions [9]. By analyzing and modeling historical 

weather and accident data, models that can provide early 

warnings for severe weather can be trained, improving flight 

safety. Furthermore, they explored how to use 

backpropagation neural networks to predict the occurrence of 

flight accidents [10]. By training on flight and accident data, 

neural network models capable of assessing flight risk can be 

established, providing decision support for safety 

management. These studies highlight the important 

applications of intelligent optimization algorithms in aviation 

safety. 

In the industrial manufacturing sector, intelligent 

optimization algorithms are used for tasks such as production 

scheduling and process parameter optimization. For instance, 

machine learning methods are applied to optimize credit risk 

assessment [11]. By modeling and predicting borrower 

attribute data, high-risk customers can be more accurately 

identified, reducing bad debt losses. Huang, D. et al. (2024) 

explored the use of the Louvain algorithm for genomic data 

identification and analysis [12]. By clustering and 

modularizing gene sequences, functional modules and 

regulatory relationships can be discovered, providing insights 

for biomedical research. The authors also studied the use of 

image enhancement methods for tumor segmentation [13]. 

By preprocessing medical images through denoising and 

contrast enhancement, the visibility of tumor regions can be 

improved, providing clearer image data for subsequent 

automatic segmentation and diagnosis. Deep neural networks 

are used in medical image classification research, such as 

pneumonia detection with AlexNet and InceptionV3 models 

[14]. These studies showcase the extensive application of 

intelligent optimization algorithms in industrial 

manufacturing and biomedical fields [15]. 

Research on intelligent optimization algorithms in 

engineering focuses on utilizing artificial intelligence 

technologies to solve complex optimization problems, 

enhancing system efficiency and performance. On one hand, 

modeling and algorithm design can automate the search and 

optimization of design parameters and control strategies, 

reducing the cost of manual tuning. On the other hand, 

integrating with deep learning and big data technologies 

allows for the extraction of hidden patterns and rules from 

massive engineering data, enabling intelligent decision-

making and prediction. Future research will need to address 

how to further improve the convergence speed, stability, and 

interpretability of intelligent optimization algorithms, while 

expanding their application in more engineering scenarios, 

making this a promising and challenging research direction. 

3 AI-RELATED CONCEPTS 

3.1 TIME SERIES ANOMALY DETECTION 

Time series anomaly detection aims to identify 

anomalous points or segments that deviate from the normal 

patterns in sequential data. This has significant applications 

in fields such as industrial fault diagnosis and financial fraud 

detection. Traditional anomaly detection methods primarily 

rely on statistical models, such as Gaussian Mixture Models 

(GMMs) and Hidden Markov Models (HMMs), which model 

the probabilistic distribution of time series data to determine 

whether new incoming data points are anomalous. These 

methods typically assume that data follows a specific 

distribution and struggle to model complex, nonlinear, and 

non-stationary time series effectively. 

In recent years, with the advancement of deep learning 

technology, more research has focused on using neural 

networks for time series anomaly detection. For example, the 

framework for finding faithful time filters (FTS) [16] uses 

decomposition and reconstruction of time series data to 

automatically learn multi-scale periodic patterns, 

constructing anomaly scores to enable real-time anomaly 

detection. Li, B. et al. (2019) proposed an adaptive ensemble 

empirical mode decomposition (AETA) method for daily 

cyclic time series feature extraction [17]. This method 

performs time-frequency analysis and periodicity detection 

on electromagnetic interference data to extract key features 

that reflect equipment status and fault precursors. These 

studies demonstrate the advantages of deep learning in time 

series anomaly detection, as it can automatically learn 

complex patterns from data without strong assumptions about 
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data distribution. 

In addition to deep learning, other machine learning 

methods such as Support Vector Machines (SVMs) and 

Isolation Forests are also used for time series anomaly 

detection. These methods learn the boundary or density 

distribution of normal data to identify points that deviate from 

these boundaries or have lower density as anomalies. For 

instance, a time series anomaly explanation method based on 

Factorization Machines [18] decomposes time series into 

multiple latent factors and uses interactions between these 

factors to characterize the root causes of anomalies, providing 

an interpretable anomaly analysis framework. 

Research in time series anomaly detection focuses on 

how to automatically identify abnormal patterns from 

sequential data, providing a basis for system monitoring and 

diagnosis. On one hand, advanced modeling methods like 

deep learning can uncover complex nonlinear relationships 

within time series data, improving the accuracy and 

robustness of anomaly detection. On the other hand, 

integrating technologies such as causal inference and 

explainability can trace the origins and impacts of anomalies, 

offering richer information for anomaly analysis and 

decision-making. Future research will need to address 

improving the real-time capabilities and adaptability of time 

series anomaly detection while expanding its deployment 

across more application scenarios, which remains a 

promising and challenging area of study. 

3.2 KNOWLEDGE GRAPHS AND INFERENCE IN 

NATURAL LANGUAGE PROCESSING 

Knowledge graphs are structured knowledge bases that 

represent entities and their relationships in the form of a graph. 

In natural language processing (NLP), knowledge graphs 

provide rich background knowledge and common-sense 

support for tasks such as text understanding, question 

answering, and reasoning. However, automatically 

constructing high-quality knowledge graphs from text and 

utilizing these graphs for complex semantic reasoning remain 

challenging issues. 

Li, B. et al. (2024) explored how to use large language 

models to handle large-scale structured and unstructured data 

[19]. By unifying the representation and encoding of data in 

different formats, efficient information extraction, retrieval, 

and generation can be achieved. This method can be used for 

the automatic construction and completion of knowledge 

graphs, mining entities and relationships from vast amounts 

of text data, and expanding the scale and quality of 

knowledge bases. They also explored how large language 

models can optimize travel route planning [20]. By 

understanding and reasoning about user preferences, 

attraction attributes, and other information, personalized 

travel route recommendations can be generated to enhance 

user experience. This knowledge-based reasoning capability 

has significant value for intelligent question answering, 

decision support, and other applications. 

In recent years, the integration of knowledge graphs 

with deep learning has become a hot topic in NLP research. 

On one hand, knowledge graphs can provide structured prior 

knowledge to guide deep learning models in making 

reasonable inferences and decisions. On the other hand, deep 

learning models can automatically learn the representation 

and update rules of knowledge graphs from large-scale text 

data, improving the efficiency of knowledge acquisition and 

reasoning. Meta-learning-based adversarial defense methods, 

which learn attack and defense strategies across multiple 

tasks, can quickly adapt to new types of attacks and enhance 

model robustness [21]. This meta-learning paradigm can be 

applied to the continuous learning and updating of knowledge 

graphs, enabling them to adapt to the ever-changing real-

world application environment. 

Despite the promising progress in combining 

knowledge graphs with deep learning, several issues remain 

to be addressed. Among these, the interpretability and 

credibility of knowledge graphs are key challenges. Since 

knowledge graphs are often automatically constructed by 

machines, they inevitably contain noise, errors, and biases, 

making the evaluation and assurance of knowledge quality an 

important research topic. Furthermore, integrating 

knowledge graphs with causal reasoning, logical reasoning, 

and other advanced cognitive abilities to achieve deeper and 

more comprehensive semantic understanding is also a 

valuable direction for exploration. 

Research on knowledge graphs and inference in NLP 

focuses on how to enhance language understanding and 

generation capabilities using structured knowledge. On one 

hand, automated knowledge acquisition and representation 

learning methods can build large-scale, high-quality 

knowledge bases, providing rich background knowledge for 

various language tasks. On the other hand, combining 

knowledge graphs with deep learning, meta-learning, and 

other technologies can enable more efficient and robust 

knowledge reasoning, improving the generalization and 

adaptability of language models. Future research will need to 

break through the bottlenecks in knowledge acquisition and 

reasoning, achieving more interpretable, credible, and 

intelligent language understanding systems, which remains a 

field full of imagination and innovation. 

3.3 APPLICATIONS OF REINFORCEMENT 

LEARNING IN ROBOT CONTROL 

Reinforcement learning (RL) is a machine learning 

paradigm where an agent interacts with its environment and 

optimizes its decision-making strategy based on feedback 

signals. In recent years, RL has gained significant attention in 

the field of robot control, offering new ideas and methods for 

autonomous learning and adaptive control of robots. 

Traditional robot control methods rely mainly on 

manually designed controllers and rules, which can struggle 

to handle complex and dynamic environments. In contrast, 

RL enables robots to autonomously learn and adapt control 
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strategies for different tasks and conditions by continuously 

trying and optimizing in their environment. For example, 

models considering the effect of hole collapse on wellbore 

stability, by coupling mechanical and seepage effects, can 

more accurately predict wellbore instability risks and guide 

drilling operations [22]. This physics-based approach can 

provide prior knowledge and constraints for RL, improving 

the efficiency and convergence of policy search. 

Deep reinforcement learning (DRL) integrates deep 

neural networks into RL, allowing robots to extract features 

and learn strategies directly from raw sensor data, 

significantly enhancing control flexibility and adaptability. 

For instance, black-box attack methods based on sequence 

queries can infer the decision boundaries and key features of 

a target model by conducting a series of carefully designed 

queries without knowing its internal structure [23]. Such 

black-box optimization methods can be used in RL for policy 

search, finding optimal control strategies without relying on 

environmental models. 

However, applying RL to practical robotic systems 

presents several challenges. First, the complexity and 

uncertainty of real environments far exceed those of 

simulation environments. Ensuring that learned strategies can 

safely and effectively transfer to real systems is a critical 

issue. Second, RL typically requires a large amount of trial-

and-error and exploration, and the exploration cost in robotic 

systems is relatively high. Learning good strategies within 

limited interaction times is a major challenge. Additionally, 

designing appropriate reward functions to guide robot 

learning and balancing exploration with exploitation to avoid 

local optima are important research areas. 

Research on RL in robot control focuses on how robots 

can master control strategies for complex tasks and 

environments through autonomous learning and optimization. 

On one hand, advanced modeling methods like deep learning 

can enhance robots' perception and decision-making 

capabilities, achieving end-to-end adaptive control. On the 

other hand, integrating prior knowledge and physical models 

can accelerate policy search and improve learning efficiency, 

overcoming the limitations of purely data-driven approaches. 

The transformative role of artificial intelligence (AI), 

particularly large language models, in improving government 

operations and detecting AI-generated content [24], 

demonstrates how AI applications in administrative 

automation, public safety, resource management, and citizen 

services can optimize operational efficiency and decision 

quality. Case studies from the U.S. IRS and Social Security 

Administration highlight successful AI implementations in 

these areas [25]. Looking ahead, improving the sample 

efficiency, safety, and interpretability of RL, while expanding 

its deployment in more robotic applications, remains an 

attractive and impactful research direction. 

3.4 EXPLAINABILITY AND FAIRNESS IN 

ARTIFICIAL INTELLIGENCE 

With the rapid development and widespread application 

of artificial intelligence (AI) technologies, the issues of 

explainability and fairness have become increasingly 

prominent. Explainability refers to the ability of AI systems 

to elucidate the reasons and processes behind their decisions, 

thereby enhancing transparency and understandability. 

Fairness involves ensuring that AI systems' decisions are not 

influenced by biases or discrimination, and that different 

individuals or groups are treated equitably. Both issues are 

crucial for the trustworthiness and social acceptability of AI 

systems. 

Traditional AI models, especially deep learning models, 

are often considered "black boxes," making it difficult to 

explain their internal mechanisms and decision bases. This 

limitation not only restricts users' understanding and trust in 

the system but also complicates debugging and improving the 

system. To enhance AI explainability, researchers have 

proposed various methods, such as attention mechanisms, 

causal reasoning, and rule extraction, to uncover key features 

and decision pathways of models. Wang, H. et al. (2024) 

explored how deep learning algorithms like BERT can detect 

and classify AI-generated text [26]. By analyzing 

grammatical, semantic, and stylistic features of text, they can 

identify machine-generated content, thereby maintaining 

content authenticity and credibility. This adversarial 

generation and detection process helps improve the 

robustness and explainability of AI systems. 

The fairness issue in AI arises from potential biases and 

imbalances in training data and algorithm design. For 

example, if the training data contains fewer samples from 

certain groups or attributes, or if there is historical bias, the 

learned model may discriminate against or negatively impact 

these groups or attributes. To enhance AI fairness, 

researchers have proposed various methods such as data 

debiasing, algorithmic fairness constraints, and model post-

processing, aimed at eliminating or mitigating biases and 

disparities in models. 

Although progress has been made in the research on 

explainability and fairness, numerous challenges and issues 

remain. First, there is often a trade-off between explainability 

and performance, making it difficult to improve transparency 

and bias while maintaining model effectiveness. Second, 

standards and methods for evaluating explainability and 

fairness are not yet standardized, and different application 

scenarios and tasks may require different considerations. 

Additionally, how to integrate explainability and fairness into 

the design and development process of AI systems, and how 

to align these with ethical, legal, and societal norms, are also 

pressing questions that need to be explored. 

4 SYSTEM FRAMEWORK AND 

SYSTEM CALIBRATION 
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4.1 ROBOTIC ARM GRASPING SYSTEM 

FRAMEWORK AND HARDWARE SELECTION 

4.1.1 System Requirements 

For unordered stacking grasping environments (as 

shown in Figure 4-1), the robotic arm grasping system needs 

to automatically perform the following tasks: utilize deep 

learning algorithms to integrate 2D and 3D visual information 

for object recognition and segmentation. A curvature-based 

region-growing segmentation method is used to extract the 

flat surfaces of target objects. Then, through calibration 

techniques between the robotic arm and camera, and using 

system coordinate transformations, the pose information of 

the objects relative to the robotic arm is calculated. Based on 

the obtained accurate pose information, the robotic arm 

actively performs the target grasping operation. Completing 

this series of tasks will enable the robotic arm to achieve 

automated grasping in unordered stacking scenarios. 

 

FIGURE 4-1 UNORDERED STACKING SCENE 

4.1.2 System Framework 

This paper addresses the problem of object sorting in 

unordered stacking scenarios by designing a robotic arm 

grasping system based on an eye-in-hand structure. The 

system captures RGB images and depth information of target 

objects using a stereo camera. Improvements are made on the 

Mask R-CNN network to achieve precise localization and 

segmentation of the targets. The depth images are used to 

measure the distance between the target and the camera[27]. 

Through a hand-eye calibration process, a transformation 

relationship between the camera coordinate system and the 

robotic arm coordinate system is established, ultimately 

calculating the 6D pose information of the target object 

relative to the robotic arm. Based on the obtained pose 

information, the robotic arm can accurately perform grasping 

operations and complete the automatic sorting task of 

scattered and stacked objects. 

4.1.3 RGB-D Camera Selection 

The RGB-D camera is capable of simultaneously 

capturing color images and depth images, using physical 

methods to measure the distance from the object to the 

camera, enabling three-dimensional spatial reconstruction 

and perception. There are several types of RGB-D cameras: 

Structured Light Method: Structured light cameras use 

triangulation principles by projecting known infrared light 

patterns onto a scene. Depth is calculated based on the 

received infrared light images. The advantage of structured 

light cameras is their high accuracy and immunity to ambient 

light and object texture, making them suitable for close-range 

measurements. 

Time of Flight (TOF) Method: TOF cameras measure 

object distance using the time-of-flight principle. They emit 

modulated light pulses and receive the reflected light from the 

object. Depth information is calculated based on the round-

trip time or phase difference of the light, providing complete 

geometric information of the 3D scene. TOF cameras are 

divided into indirect TOF (i-ToF), which measures distance 

by analyzing phase differences of sine or pulse waves, and 

direct TOF (d-ToF), which measures distance by the time it 

takes for light pulses to travel. 

Line Laser Method: Line laser cameras also use 

triangulation principles by projecting a laser line onto the 

object's surface. The image sensor receives the reflected laser 

line, and depth information is computed based on the position, 

shape of the laser line in the image, and the geometric 

relationship between the camera and the laser. 

Based on practical requirements, this paper selects the 

Graphy FS-820 stereo structured light camera (as shown in 

Figure 4-2), with its performance parameters listed in Table 

4-1. This camera can simultaneously capture high-quality 

color images and depth images, providing reliable perceptual 

information for object localization and grasping in unordered 

stacking scenarios. 

 

FIGURE 4-2 TUYA FS-820 

TABLE 4-1 PERFORMANCE PARAMETERS 

Indicator Parameter 

Working Distance 0.3m-1.4m 

FOV (H/V) 66°/44° 

Accuracy (X, Y) 4.88mm@700mm 

Accuracy (Z) 0.14mm@400mm; 

1.53mm@700mm 

Depth Resolution 1280*800 

RGB Resolution 1920*1080 

Data Interface Gigabit Ethernet (RJ45 

Aviation Interface) 
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4.1.4 Robotic Arm Selection 

Industrial six-axis collaborative robots are advanced 

robotic technologies that can safely perform various tasks 

while sharing the workspace with humans. These robots have 

six degrees of freedom, allowing for flexible movement and 

operation in three-dimensional space. Industrial six-axis 

collaborative robots typically consist of several main parts, 

including the base, rotation axis, lower arm, upper arm, wrist, 

and end effector. The rotation axis, lower arm, upper arm, and 

wrist correspond to the S, L, U, and R axes, respectively, 

while the wrist also includes the B and T axes. The 

coordinated movement of these six axes enables precise 

positioning, posture adjustment, and directional control of the 

robot in space. 

The operation principle of a six-axis collaborative robot 

arm relies on the coordinated work of driving components 

such as motors, reducers, and encoders, along with control 

components like sensors and controllers. The driving 

components are responsible for moving each joint, while the 

control components ensure the coordination and precise 

control of these joints to achieve predetermined motion 

trajectories and task goals. 

In this project, based on actual requirements, we 

selected the six-axis collaborative robot arm produced by 

Fairino Company, as shown in Figure 4-3. This collaborative 

arm offers excellent performance and reliability, capable of 

meeting our application needs. 

 

FIGURE 4-3 FAIRINO FR3 COLLABORATIVE ROBOT ARM 

4.1.5 End Effector 

Considering that the workpieces to be handled are 

primarily flat parts, we decided to use a vacuum suction cup 

as the robot's end effector, as shown in Figure 4-4. This 

vacuum suction cup uses an industrial pump as its power 

source and controls the suction and release processes through 

an electromagnetic valve. When the valve is opened, the 

industrial pump extracts air, creating a vacuum between the 

suction cup and the surface of the workpiece, generating 

suction force that allows the suction cup to securely grasp the 

workpiece. When the workpiece needs to be released, the 

valve switches states, allowing air to re-enter the suction cup, 

eliminating the vacuum and releasing the workpiece. This 

vacuum suction cup has a simple structure, is easy to control, 

and is well-suited for gripping flat parts. 

 

FIGURE 4-4 END FLANGE AND VACUUM SUCTION CUP 

4.2 FRAMEWORK AND HARDWARE SELECTION 

FOR AUTOMOTIVE ONE-WAY CLUTCH 

DEFECT DETECTION SYSTEM 

To meet the requirements for workpiece inspection, we 

selected an automotive part commonly used in actual 

production as the inspection object. Based on production 

inspection standards, we will use a vision system to perform 

"misassembly and omission" detection to identify and 

eliminate defective parts. 

The one-way clutch is a crucial component in 

automotive parts, primarily functioning to ensure that the 

engine's power is transmitted to the transmission in only one 

direction, thereby maintaining the smooth operation of the 

vehicle. The one-way clutch typically consists of several key 

parts, including the housing, ball bearings, springs, and the 

inner sleeve. Among these, the ball bearings are the key 

components that can freely roll or lock between the housing 

and the inner sleeve, enabling the one-way transmission 

function. 

The working principle of the one-way clutch relies on 

the friction between the ball bearings and the housing and 

inner sleeve. When the housing rotates clockwise relative to 

the inner sleeve, the ball bearings are pressed into the grooves 

between the housing and inner sleeve by the force of the 

spring, creating a locked state, allowing effective power 

transmission between the housing and inner sleeve. 

Conversely, when the housing rotates counterclockwise 

relative to the inner sleeve, the ball bearings are pushed out 

of the grooves by the spring, creating a rolling state, 

preventing power transmission between the housing and inner 

sleeve, thus achieving the one-way transmission function. 

4.3 SYSTEM CALIBRATION 

A stereo camera uses the principle of triangulation to 

obtain depth information of a target object. The basic idea of 

this principle is to capture the same scene from two different 

angles using two cameras placed at different positions. By 

analyzing the disparity between the two images, the distance 

to the target object can be calculated. This method mimics the 

way human binocular vision works, where the difference 
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between the images seen by the left and right eyes is 

compared to determine the distance of objects. 

We can describe the triangulation principle in stereo 

cameras using mathematical formulas. Let the optical centers 

of the two cameras be OL and OR, with their image planes 

being IL and IR, respectively. The baseline length between 

the two cameras is denoted as b. Suppose the target object P 

has coordinates (x, y, z) in 3D space, and its projection points 

on IL and IR are PL and PR, with coordinates (xL, yL) and 

(xR, yR), respectively. Using the properties of similar 

triangles, we derive the following relationships: 

xL / f = x / z    (4-1) 

xR / f = (x-b) / z    (4-2) 

where f represents the focal length of the cameras. From 

these two equations, we can solve for the distance z from the 

target object P to the camera plane: 

z = b * f / (xL - xR)    (4-3) 

This formula shows that the depth information z of the 

target object depends only on the baseline length b, the focal 

length f, and the disparity (xL - xR). The larger the disparity, 

the closer the target object is to the camera; conversely, the 

smaller the disparity, the farther the object is. Therefore, by 

measuring the disparity between the left and right images, the 

depth information of the target object can be obtained. 

In practical applications, some errors are inevitable in 

stereo imaging: 

Algorithm Factors: The performance and complexity of 

the matching algorithm directly affect the accuracy and speed 

of disparity calculation. Matching algorithms are typically 

divided into local and global methods. Local methods are 

based on pixel or block matching, offering faster speed but 

are susceptible to noise and lighting interference, and struggle 

with low-texture or occlusion areas. Global methods, based 

on energy minimization optimization, consider overall image 

consistency and can produce more accurate and smoother 

disparity maps, but at the cost of higher computational 

demand and slower speed. 

Hardware Factors: The hardware for stereo imaging 

mainly includes two cameras and a baseline. Parameters such 

as camera focal length, resolution, distortion, and baseline 

length all affect the errors in stereo imaging. Generally, 

greater focal length, higher resolution, lower distortion, and a 

longer baseline improve stereo imaging accuracy. However, 

these parameters involve trade-offs; for instance, too large a 

focal length reduces the field of view, higher resolution 

increases computational burden, and a longer baseline 

exacerbates occlusion issues. 

Target Object Factors: The characteristics of the target 

object itself can also affect stereo imaging errors. For 

example, the distance of the target object from the cameras 

impacts the disparity. Generally, the farther the object is, the 

smaller the disparity and the greater the error. 

5 INSTANCE SEGMENTATION 

ALGORITHM BASED ON MASK R-

CNN 

5.1 MASK R-CNN NETWORK FRAMEWORK 

Mask R-CNN is a two-stage neural network architecture, 

and its workflow can be divided into two main steps. The 

network first generates a series of candidate regions that may 

contain target objects, a step known as Region Proposal. In 

the second step, the network further processes these candidate 

regions by classifying them, determining the object category 

to which they belong, and performing regression to refine 

their position and size for more accurate bounding boxes. 

Through these two steps, Mask R-CNN effectively detects 

and segments target objects in images, producing high-

quality segmentation masks. Figure 5-1 shows the Mask R-

CNN network framework. 

 

FIGURE 5-1 MASK R-CNN NETWORK FRAMEWORK 

5.2 2D/3D FUSION DUAL-MODALITY FUSION 

MODEL 

The early fusion of RGB images and depth images is a 

simple and effective multimodal data fusion method. It 

combines RGB images and depth images into a new input 

data before feeding it into the model. There are two common 

methods for early fusion. Channel Concatenation: Directly 

concatenating the three channels of the RGB image with the 

one channel of the depth image to form a four-channel input. 

This method retains all the original information but increases 

the input dimensionality. Weighted Fusion: Performing a 

weighted sum of the pixel values from the RGB image and 

the depth image to generate a new grayscale or color image 

as input. The weights can be fixed or adaptive. This method 

can highlight certain information but may lose some other 

information. Encoding Mapping: Depth values are mapped to 

color space using specific encoding rules, and then fused with 
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the RGB image to create a pseudo-color image. Common 

encodings include rainbow colors and heatmaps. This method 

provides good visualization effects but introduces prior 

assumptions. 

Data resulting from early fusion can be directly input 

into existing CNNs or other models for training and inference 

without modifying the network structure. However, early 

fusion may overlook some associations and complementary 

information between RGB and depth. As a convenient 

multimodal fusion approach, RGB-D early fusion can quickly 

enhance model performance in tasks such as semantic 

segmentation and object detection, but it is not always the 

optimal fusion strategy. Effectively leveraging the 

appearance information from RGB images and the geometric 

information from depth images is key to RGB-D fusion. 

5.3 DATASET CREATION 

This section introduces an RGB-D instance 

segmentation algorithm based on Mask R-CNN. The Mask 

R-CNN has been improved into a dual-modal fusion network 

by adding a parallel depth branch. The depth image is first re-

encoded into an HHA map and then input into the depth 

branch to extract features. These features are fused with those 

from the RGB branch after the RoI Align layer, and are used 

for subsequent classification, bounding box regression, and 

mask prediction. For unordered stacking scenes, a total of 200 

pairs of RGB-D images with random positions, quantities, 

and stacking states of objects were collected using a Graphy 

FS-820 camera. The RGB images are color images, while the 

depth images are obtained through stereo disparity 

computation. The dataset was semantically annotated using 

the LabelMe tool. During annotation, attention was given to 

marking only the visible regions of objects, checking the 

quality of bounding boxes, and selectively discarding low-

quality images based on requirements. Data augmentation 

was performed on the annotated data, including 

transformations such as rotation, cropping, exposure changes, 

and adding noise, to enhance the diversity of the data and 

improve the model's generalization and robustness. The work 

in this section prepares the data for subsequent RGB-D 

instance segmentation model training and evaluation. A well-

designed data collection, annotation, and augmentation 

strategy is fundamental to obtaining high-performance 

segmentation models. Additionally, specifically improving 

the segmentation network structure and integrating the 

appearance information from RGB images with the geometric 

information from depth images is a key approach to 

enhancing segmentation accuracy in complex scenes. 

6 SYSTEM ALGORITHM AND 

EXPERIMENTAL ANALYSIS 

6.1 ROBOTIC ARM GRASPING SYSTEM 

 

The RGB-D instance segmentation algorithm based on 

Mask R-CNN focuses on improving the original Mask R-

CNN by transforming it into a dual-modality fusion network, 

adding a parallel depth branch. The depth images are first re-

encoded into HHA images, which are then input into the 

depth branch to extract features. These features are fused with 

those from the RGB branch after the RoI Align layer and are 

used for subsequent classification, bounding box regression, 

and mask prediction. For unstructured stacking scenarios, 200 

sets of RGB-D image pairs with random object positions, 

quantities, and stacking states were captured using a FS-820 

camera. The RGB images are in color, while the depth images 

are obtained via stereo disparity calculation. Semantic 

labeling of the dataset was performed using the labelme tool. 

During labeling, special attention was given to marking only 

the visible regions of the objects, checking the quality of the 

bounding boxes, and filtering out low-quality images based 

on the specific requirements. The labeled data was augmented 

through transformations such as rotation, cropping, exposure 

variation, and noise addition to enhance data diversity and 

improve the model's generalization and robustness. 

6.2 ONE-WAY CLUTCH DEFECT DETECTION 

SYSTEM 

This section will describe the experimental platform 

setup and software algorithm implementation for the robotic 

arm grasping system and the "wrong/loose assembly" 

detection system. In the grasping system, we utilized the 

2D/3D multimodal fusion Mask R-CNN network proposed in 

the previous chapter. By comparing the network performance 

before and after improvements, we found that the improved 

network exhibits better adaptability in various environments. 

We integrated point cloud algorithms to achieve precise 

localization of target objects and tested the system's 

positioning capabilities. The results indicate that the system 

meets actual application requirements. 

In the "wrong/loose assembly" detection system, we 

provide a detailed description of the algorithm process and 

detection results. By using an industrial camera and lens to 

form an image acquisition system, we collected images of 

unidirectional devices with different models and defects on a 

specific experimental platform. Semantic segmentation was 

performed on the unidirectional gear, and by comparing 

combinations of different backbone networks and semantic 

segmentation networks, we found that using a combination of 

vgg16 and unet networks achieved the highest segmentation 

accuracy. Based on this, we located the detection ROIs for the 

copper sleeve, chamfer, and semicircle according to the gear 

segmentation results, cropped the images, and created a 

dataset for subsequent classification detection. Testing 

different models and sizes of unidirectional devices with the 

trained model showed that the algorithm has strong 

generalization ability, with an overall detection accuracy of 

over 98%, meeting the practical production needs of 

enterprises. 
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7 CONCLUSION 

This paper proposes an innovative 2D/3D vision fusion 

robotic arm grasping solution, which uses a stereo camera to 

identify and locate randomly stacked target objects, providing 

their 6D pose information and enabling precise robotic arm 

grasping. To meet the requirements of workpiece quality 

control, the detection of automotive one-way clutch 

components was used as a case study. A deep learning model 

was developed to detect component defects, improving the 

efficiency of workpiece inspection. A comprehensive system 

framework was designed, and an experimental platform was 

built. For unstructured stacking scenarios, the Mask R-CNN 

network was improved to enhance workpiece segmentation 

performance. Point cloud processing algorithms were used to 

determine workpiece pose, enabling robotic arm grasping. 

For detecting "misassembly" of the one-way clutch, an 

automated detection system was designed, utilizing 

segmentation and classification networks to inspect the 

various parts of the clutch. Experimental results demonstrate 

that the proposed solution exhibits high robustness, 

positioning accuracy, and defect detection accuracy, meeting 

the needs of practical applications. 

In future work, we will explore the use of 

multithreading parallel computing to accelerate the depth 

map processing, improving system real-time performance. 

Additionally, coupling pose estimation with deep learning 

networks will be investigated to simplify the algorithm 

process and achieve end-to-end predictions. Another 

direction for development includes using lightweight 

networks to reduce model parameters and optimize 

deployment. Moving forward, we will further extend this 

system to other industrial scenarios, such as part assembly 

and complex defect detection, providing more intelligent 

solutions to enhance the level of industrial automation. 
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