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Abstract: This article introduces the importance and challenges of detecting anomalies in high-frequency volatility data in 

financial markets. Traditional methods such as SV and GARCH models have been unable to cope with the rapidly changing 

and increasing complexity of the market environment, so new strategies must be developed to identify abnormal fluctuations 

quickly. This paper proposes a method based on local linear mapping (LLM), which aims to improve anomaly detection 

accuracy, monitor market fluctuations in real-time, and identify potential risk events, enhancing investment decisions and 

promoting financial market stability and sustainable development.  
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1 Introduction 

In financial markets, anomalous volatility behavior can 

arise from changes in market sentiment, significant events, 

or other factors, making volatility a crucial risk metric [1-3]. 

Detecting anomalous volatility enables timely identification 

of erratic market behavior, aiding financial institutions and 

investors in risk management to mitigate potential losses. 

Moreover, it enhances understanding and interpretation of 

market dynamics, facilitating adjustments in investment 

strategies for improved decision-making accuracy and 

success rates. Traditionally, scholars have relied on low-

frequency data to study various financial market issues, 

employing SV models (Stochastic Volatility models) and 

GARCH models (Generalized Autoregressive Conditional 

Heteroskedasticity models) to analyze market volatility 

effectively. However, with rapid financial market evolution 

and globalization, volatility changes have become more 

frequent and complex, surpassing the capabilities of low-

frequency data to track trends and detect anomalies in real 

time.  

Therefore, developing methods for detecting anomalies 

in high-frequency financial market volatility data is crucial. 

Feng Huawei incorporated variance terms into traditional 

Random Forest models and utilized Deep Recursive Neural 

Networks (Deep RNNs) for data training [4-6], achieving a 

minimum 2% improvement in F1 scores compared to other 

algorithms. From a fund flow perspective, Ji Xun addressed 

data scarcity issues in anomaly detection models within 

financial systems by employing methods such as Support 

Vector Data Description (SVDD) and Principal Component 

Analysis (PCA) [7], conducting empirical analyses to detect 

and analyze anomalies in financial systems. However, these 

methods exhibit high computational complexity and poor 

real-time performance. The Local Linear Mapping (LLM) 

model effectively handles various financial market volatility 

data characteristics, including fat tails, jumps, and non-

stationarity, making it a robust tool for analyzing complex 

data. This positions the LLM model as advantageous for 

applications in high-frequency data. Therefore, this paper 

proposes an anomaly detection method based on LLM [8] 

for high-frequency financial market volatility data. The 

technique aims to enhance anomaly detection accuracy, 

enable real-time monitoring of market volatility, identify 

potential risk events, and improve investment decision-

making, contributing to financial market stability and 

sustainable development. 

2 Related Work 

2.1 High-frequency data preprocessing of 

financial market volatility 

When selecting an anomaly detection method, it is 

essential to consider the characteristics of the samples 

carefully. High-frequency financial volatility data often 

lacks negative samples, making it unsuitable for traditional 

binary classification methods. Instead, Support Vector Data 

Description (SVDD) [9-11], which is suitable for low-

dimensional data, addresses the issue of severely 

imbalanced data by mapping samples into a higher-

dimensional space and enclosing positive samples with a 
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minimum hyper-sphere while introducing slack variables 

and penalty parameters for optimization to avoid overfitting 

[12]. For high-dimensional data, Principal Component 

Analysis (PCA) facilitates dimensionality reduction and 

captures sample variation by calculating deviations from the 

central position of the samples. SVDD and PCA effectively 

address anomaly detection problems across different data 

dimensions. 

This study utilizes financial transaction data from a 

company on the Kefengdai platform in 2022, focusing on 

credit information indicators across 30 attributes. PCA is 

employed to reduce the data dimensions into a low-

dimensional feature representation. Subsequently, an 

unsupervised learning approach constructs a single-class 

classification model, utilizing one-class [13] SVM as an 

SVDD model to describe the dataset. Since average data 

constitutes a large proportion in anomaly detection while 

abnormal data is relatively small, addressing class 

imbalance is crucial. Moreover, cautious handling is 

paramount due to the potential impact of misidentifying 

abnormal data in anomaly detection. 

      (1) 

To ensure comparability of all high-frequency 

financial market volatility data targets in metric values, 

standardizing daily average sequence data for each high-

frequency [14] data target is performed before computing 

indicators. 

2.2 Filtering and Processing of High-Frequency 

Financial Market Volatility Data 

When performing graph analysis on high-frequency 

financial market volatility data, the constructed graph 

network contains many abnormal and normal data, making it 

challenging to mine the hidden anomalous data targets [5]. 

A subgraph filtering method is employed to process the 

high-frequency financial market volatility data to address 

this issue. The specific method is as follows [15-17]: 

Edges' attribute values are extracted across dimensions 

and filtered using ReLU layers. Specifically, for the i-th 

dimension, let the edge attribute feature value between two 

nodes be \( f_i \), and set a threshold \( f_{i0} \). When the 

feature value \( f_i \) reaches the threshold \( f_{i0} \), the 

edge between the nodes is retained, and edges irrelevant to 

the dimension are removed, thereby obtaining filtered 

subgraphs for each dimension. This helps understand the 

influence of each dimension on the relationships between 

nodes in the dataset, facilitating more detailed observation 

and interpretation of the data structure and associations in 

data analysis and visualization. 

2.3 Feature Extraction of High-Frequency Financial 

Market Volatility Data Using Multi-Dimensional 

Graphs 

Based on the data filtering process, financial market 

volatility high-frequency data features are extracted through 

multi-dimensional graph mapping. Using the connected 

component algorithm [18], data with edge connections are 

divided into the same connected component, and connected 

island data is mined through node and edge traversal. 

Filtering across dimensions is performed to divide 

connected subgraphs. The hierarchical features are as 

follows: 

1. Intra-group Individual Features [19]: Includes 

statistical indicators such as mean, standard deviation, 

maximum, and minimum values used to describe the 

variation of each financial market volatility data. 

2. Cluster Topological Features [20]: Includes the 

number of edges within the group, average edge weights, 

and degree distribution used to describe the connections and 

relationships between nodes in the subgraph. 

3. Cluster Importance Features [22]: Using the 

PageRank algorithm, the influence and importance of each 

data point in the network are assessed based on its 

connectivity with other nodes, calculating its importance 

value. Data points with high impact and significance in the 

financial market are identified by analyzing cluster 

importance features, facilitating a better understanding of 

market changes and trends for decision-making. 

Compared to the initial M single features of high-

frequency financial market volatility data, this feature 

extraction approach effectively enhances the feature 

dimension. [23-25] Increasing the quantity and diversity of 

features enables a more comprehensive exploration of the 

latent information and patterns in high-frequency financial 

market volatility data, enhancing the analysis and prediction 

capabilities for these data, thus providing more robust 

support for decision-making and risk management. 

3 Methodology 

3.1 Large language model anomaly detection 

This section demonstrates how a multi-agent AI 

framework can be applied to financial market data - 

specifically, a daily S&P 500 index series from 1980 to 

2023. This example explains how LLM-powered multi-

agent models process and analyze real-world financial data, 

illustrating every stage of the process from anomaly 

detection to final decision-making. [26] Using the well-

known S&P 500 series as a test case, I aim to highlight the 

framework's proficiency in navigating the complexity of 

financial datasets. The examples provided in this section are 

real-world results of a fully automated, custom-developed 

framework. 
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The initial phase of the demonstration involved 

anomaly detection, which was performed by applying the z-

score method to the daily percentage change of the S&P 500 

series. Choose a deliberately high z-score threshold (10) to 

highlight significant outliers, ensuring attention to the most 

critical deviations. As a result, three outliers were identified 

on October 19, 1987, October 13, 2008, and March 16, 2020 

(Figure 1). In addition, to challenge the recognition 

capability of the framework, three missing values were 

deliberately inserted into the data set. This approach aims to 

assess not only the framework's ability to identify significant 

anomalies but also its ability to distinguish between natural 

anomalies and deliberately introduced inaccuracies. [27-29] 

The carefully introduced legal anomalies and potential 

errors create a delicate testing environment that allows for a 

thorough assessment of the proficiency of multi-agent AI 

models in managing the inherent complexity of real-world 

financial data. Once these data points are detected, they are 

converted into a format suitable for machine processing, as 

shown in Table 1, laying the foundation for subsequent 

analysis by the AI agent. 

 
Figure 1. Anomalies identified in the S&P500 series 

While preparing input data, integrating tabular data 

and its corresponding metadata is critical to the 

effectiveness of AI systems. Acquiring metadata - including 

details such as the name, origin, frequency, description, and 

data coverage - is necessary for AI to understand and 

contextualize the detected anomalies fully. This integration 

allows the AI system to interpret tabular data more 

accurately and maximize the knowledge gained during LLM 

pre-training. 

3.2 Develop agents for data issues 

After receiving the exception data and associated 

metadata, the agent responsible for formulating the data 

problem plays a crucial role in the initial phase of exception 

verification. The agent's output includes questions designed 

to explore the validity and context of the identified 

exception. The questions developed by the agent serve 

various purposes: they aim to confirm the nature of the 

detected anomalies, understand their significance in the 

historical and market context, and prepare relevant large-

scale language models for further validation. The table 

below shows how agents guide and respond to unusual 

events within the S&P 500 index. [30] The output generated 

by the agent reflects the human-like response, indicating a 

satisfactory integration of tabular data and LLMs. 

This refinement is reflected in the following key 

aspects: 

• Situational awareness: Although there is no explicit 

event information in the data or metadata provided, 

agents infer and incorporate relevant historical context, 

such as Black Monday and the impact of COVID-19 on 

financial markets. This ability to correlate numerical 

anomalies with significant real-world events 

demonstrates an agent's situational understanding and 

the use of pre-trained data to enrich the analysis. 

• Adaptability: The agent's problem seeks not only to 

verify the nature and accuracy of the anomaly data but 

also to intelligently speculate on possible explanations 

for these anomalies, such as suggesting whether the 

data points represent a percentage drop, a point drop, or 

some other measurement. This adaptability ensures a 

comprehensive verification process that considers the 

full range of possible causes of the problem. 

• Efficiency: The agent effectively manages the context 

window by grouping similar questions and aggregating 

queries related to missing values into a single question. 

This approach optimizes interaction with subsequent 

LLM-based analysis phases, ensuring the problem 

remains within acceptable processing and analysis [31]. 

This efficiency is critical to maintaining the system's 

performance, scalability, and responsiveness. 

• Pre-trained knowledge exploitation: The ability of 

agents to add additional information and provide 

possible interpretations based on pre-trained knowledge 

underscores the powerful integration of LLMs into the 

framework. This integration enables the system to 

leverage large amounts of historical data and insights to 

enhance the depth and accuracy of the anomaly 

verification process. 

4 Conclusion 

Demonstrating the potential of AI in financial market 

price analysis through multi-agent workflows reflects the 

potential for emerging technologies to improve data 

monitoring and anomaly detection. Integrating LLMs with 

traditional analytical methods can significantly improve 

market surveillance and decision-making accuracy and 

efficiency. This approach is expected to simplify data 

review, speed up the detection of market anomalies, and 

provide decision-makers with timely information. [32-33] 

The key to this approach's success and widespread 

application lies in effective metadata management and data 

governance. As an essential bridge, metadata can promote 

the transformation of tabular data into a structure conducive 

to LLM processing, enrich the data context, and improve the 

efficiency and accuracy of LLM-driven processes. Such 
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advances in AI-driven analysis of price data in financial 

markets herald a reconfiguration of data analysis and 

decision-making. As AI technology evolves, the future 

envisions a framework capable of autonomously performing 

increasingly complex analytical tasks, reducing the need for 

human supervision. [34-36] This evolution toward AI-

centric approaches in financial market price data analysis is 

expected to streamline anomaly detection and review 

procedures and find applications in various fields that 

require sophisticated data analysis capabilities. Amid these 

promising developments and the prospect of AI in financial 

market price analysis, it is crucial to emphasize the 

indispensable role of human oversight in the development 

stage of AI technology. [37] The demands for accuracy, 

accountability, and adherence to ethical standards in AI 

applications call for vigilant human oversight. As AI 

systems gain autonomy and become more integrated in 

decision-making, the potential for systemic bias, 

inaccuracies, and unexpected outcomes underscores the 

need for continued human engagement. This engagement is 

necessary to validate AI outputs and steer these technologies 

in a direction that meets ethical standards and societal 

values. 
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