
Journal of Engineering Technology and Applied Science

ISSN Applying | Vol. 1, No. 1, 2023

Published By SOUTHERN SCIENTIFIC RESEARCH CENTER, UK 1

The Design of an Automated Software Development

Documentation Writing System

Mingyu TANG 1*

1 Nanjing Vocational University of Industry Technology, Nanjing, 210023, China

* Mingyu Tang is the corresponding author, E-mail: 2363034170@qq.com

Abstract: This paper introduces the design of an innovative automated documentation writing system aimed at improving the

efficiency and quality of software development documentation writing. Traditional manual documentation methods pose several

challenges, such as being tedious, time-consuming, and error-prone, limiting the efficiency of documentation writing in software

development. To address these issues, we have designed an automated documentation writing system from both theoretical and

software architecture perspectives, incorporating deep learning and natural language processing technologies. The system is

designed to automatically extract information from source code and comments and generate high-quality technical documents.

Keywords: Automated documentation writing system, Software development, Information extraction.

DOI: https://doi.org/10.5281/zenodo.8344155

1. Introduction

In modern software development processes,

documentation writing has always been an indispensable part.

Software development documents not only record the design

and implementation details of a system but also play a crucial

role in team collaboration, maintenance, and knowledge

transfer. However, traditional manual documentation methods

come with various challenges such as being tedious, time-

consuming, and prone to errors, leading to bottlenecks and

inefficiencies in documentation writing during software

development.

With the rapid advancements in artificial intelligence and

natural language processing technologies, automated

documentation writing systems have emerged as a promising

solution to address these challenges. These systems have the

potential to automatically extract information from software

code and related data, generating high-quality documents. This

can accelerate the development process, reduce the burden on

developers, and minimize errors in documentation writing.

This paper aims to introduce an innovative design of a

software development document automation system. The

system combines the latest achievements in natural language

processing, machine learning, and software engineering to

achieve the goal of automatically generating technical

documents from source code and comments. Our research will

explore the system's architecture, design principles,

implementation methods, and experimental results to validate

its feasibility and performance in real-world development

environments.

Furthermore, we will discuss the potential advantages of

this automated documentation writing system in improving

software development efficiency, reducing errors, and

promoting team collaboration. We will also outline future

research directions. Through this research, we hope to bring

new methods and tools to the field of documentation writing

in software development, facilitating more efficient, accurate,

and innovative software development practices.

2. Current Research Status

The research on automated documentation writing

systems has garnered widespread attention in the field of

software engineering. With the increasing complexity of

software development, manual documentation methods have

become less viable, prompting researchers to explore methods

for automated document generation. In this section, we will

describe the main research areas and existing methods related

to automated documentation writing.

2.1 Natural Language Processing Techniques

Natural Language Processing (NLP) techniques play a

crucial role in automated documentation writing. Researchers

have developed various NLP algorithms and models for

extracting information from software source code and

comments and generating natural language documents. For

example, deep learning-based models such as Recurrent

Journal of Engineering Technology and Applied Science

ISSN Applying | Vol. 1, No. 1, 2023

Published By SOUTHERN SCIENTIFIC RESEARCH CENTER, UK 2

Neural Networks (RNNs) and Transformer models have made

significant progress in tasks like translating code comments

into documentation. Additionally, NLP techniques such as

Named Entity Recognition, Relation Extraction, and

summarization are widely used in automated documentation

writing.

2.2 Code Analysis and Comment Interpretation

In addition to NLP techniques, code analysis and

comment interpretation are another essential area of automated

documentation writing. Researchers have developed various

code analysis tools to extract code structure, functions,

variables, and relationships and convert this information into

understandable document formats. Some tools can even

generate temporal documents to help developers understand

the code's evolutionary history and version differences.

2.3 Existing Tools and Applications

Research in automated documentation writing has led to

practical applications and tools. For instance, tools like

Doxygen, Javadoc, and Sphinx are widely used in software

development to automatically generate code documentation.

Furthermore, some commercial automated documentation

writing tools have emerged, such as Swagger for API

documentation generation and Slate for RESTful API

documentation generation. These tools and applications

significantly improve documentation quality and consistency

while reducing the workload associated with documentation

writing.

2.4 Research Challenges and Future Directions

Despite significant progress in automated documentation

writing, several challenges persist. Some challenges include

understanding code context, quality control in document

generation, and multi-language support. Future research

directions may involve the application of advanced NLP

models, enhancements in deep learning techniques, and the

integration of automated documentation with knowledge

graphs.

3. Problem Statement

In software development, documentation writing has

always been indispensable as it helps in recording system

design, implementation details, and provides valuable

information to developers and maintainers. However,

traditional manual documentation methods suffer from

significant issues such as time consumption, error-proneness,

and difficulties in maintaining consistency. Therefore, we

present the following problem statement aimed at addressing

these challenges and improving the quality and efficiency of

software development documentation.

3.1 Research Problem

The primary problem statement for this research is as

follows:

"How can we design an automated documentation

writing system capable of extracting information from source

code and related data to generate high-quality technical

documents, thus accelerating the software development

process, reducing the burden on developers, and lowering

error rates in documentation writing?"

This problem encompasses the core objectives of an

automated documentation writing system, including designing,

implementing, and evaluating a potentially impactful solution

that can enhance the way documentation is written, ultimately

improving software development efficiency.

3.2 Research Objectives

To address the aforementioned problem, the main

objectives of this research are as follows:

a. Design an automated documentation writing system

with the capability to extract necessary information from

source code, comments, and other relevant data.

b. Develop the core components of the system, including

data collection and preprocessing modules, information

extraction algorithms, and document generation engines.

c. Implement the system and conduct testing and

evaluation in real software development environments to

validate its performance and effectiveness.

d. Analyze the advantages and limitations of the system,

discussing its practical applications in software development.

3.3 Research Scope

The scope of this research will include the following

aspects:

a. System design and implementation will focus on

specific types of software projects to validate the feasibility of

the system.

b. The research will primarily concentrate on extracting

information from source code and comments and generating

technical documents, without addressing other document

types.

c. The study will evaluate the performance and

effectiveness of the system but will not delve into user

interfaces or other human-computer interaction issues.

By clearly defining these problems, objectives, and

scope, our research aims to provide an innovative solution for

automated software development documentation writing, with

the potential to enhance the efficiency and quality of

documentation writing, thereby positively impacting the field

of software engineering. The following chapters will provide

Journal of Engineering Technology and Applied Science

ISSN Applying | Vol. 1, No. 1, 2023

Published By SOUTHERN SCIENTIFIC RESEARCH CENTER, UK 3

detailed insights into the design and implementation of our

automated documentation writing system to meet the

requirements outlined above.

4. System Design

This section will provide a detailed overview of the

architecture and core components of our designed automated

documentation writing system. The system is aimed at

extracting information from source code and related data to

generate high-quality technical documents, thus enhancing

software development efficiency and documentation quality.

4.1 System Architecture

Our automated documentation writing system employs a

layered architecture comprising the following main

components:

Data Collection and Preprocessing Module: This

module is responsible for extracting information from source

code, comments, and other relevant data sources. It includes

data collectors, code parsers, and text cleaners used to prepare

input data for subsequent processing.

Information Extraction Algorithms: Information

extraction algorithms form the core component of the system,

responsible for identifying and extracting critical information

such as functions, variables, classes, and relationships. We

employ natural language processing techniques and code

analysis methods to understand the structure and semantics of

the code.

Document Generation Engine: The document

generation engine receives the output from the information

extraction algorithms and converts it into understandable

natural language documents. We use templates and

automatically generated text segments to create the structure

and content of technical documents.

User Interface (Optional): The user interface module

allows interaction with the system, enabling users to specify

document generation options and parameters. While the

primary focus of this research is automated documentation

writing, the user interface can provide additional

customization and control options.

4.2 Data Flow

The workflow of the system is as follows:

a. The Data Collection and Preprocessing Module first

extracts information from source code and comments and

cleans and prepares it for use by the information extraction

algorithms.

b. Information extraction algorithms analyze the

prepared data, identifying and extracting critical information

from the source code. This includes recognizing code

structures, functions, variables, etc., and establishing the basic

framework of the document.

c. The Document Generation Engine receives the output

from the information extraction algorithms and converts it into

readable technical documents. The engine uses templates and

automatically generated text to populate the document's

content.

d. The final generated technical document is made

available for use in software development, providing detailed

information about code structure and functionality for

developers and maintainers.

4.3 Technical Details

In this research, we utilize Natural Language Processing

(NLP) techniques such as word embeddings and Named Entity

Recognition to support information extraction and document

generation. The accuracy and efficiency of information

extraction algorithms are crucial to the system's performance;

hence, we focus on optimizing and enhancing these

algorithms.

Furthermore, to support multiple programming

languages and development environments, we will design the

system for scalability, making it adaptable to various projects

and requirements.

5. Conclusion

The automated documentation writing system developed

in this research aims to enhance the efficiency and quality of

software development documentation writing. Through the

application of deep learning and natural language processing

techniques, we have successfully designed a system with

significant potential.

Future research can explore directions such as

multilingual support, user interface enhancements, integration

with knowledge graphs, and real-time document updates to

further improve the system's performance and functionality.

Through this research, we provide software development

teams with a more efficient, accurate, and consistent

documentation writing tool, with the potential to improve

software development practices. We look forward to the future

developments in this field to offer even more value and

convenience.

Acknowledgments

The authors thank the editor and anonymous reviewers

for their helpful comments and valuable suggestions.

Journal of Engineering Technology and Applied Science

ISSN Applying | Vol. 1, No. 1, 2023

Published By SOUTHERN SCIENTIFIC RESEARCH CENTER, UK 4

Funding

Not applicable.

Institutional Review Board
Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.

Author Contributions

Not applicable.

About the Authors

Mingyu Tang, a student at Nanjing Vocational and

Technical University of Technology, mainly focuses on

financial data analysis, information technology, and data

processing.

References

[1] Li Linglu. VC++ Development Document Automation

Generation System[J]. China Electric Power Education,

2007(S3): 219-221. DOI: 10.19429/j.cnki.cn11-

3776/g4.2007.s3.085.

[2] Huang Hanguang. Strengthening Software Development

Documentation According to Software Engineering

Standards[J]. Journal of Southwest Petroleum University,

1993(04): 117-120.

[3] Zuo Kuo, Li Ning, Tian Ying'ai, et al. Automatic Testing

Method for Flow Document Layout Effects[J]. Computer

Engineering and Applications, 2021, 57(02): 273-278.

[4] Hou Weibo. Design and Implementation of Software

Project Document Format Review System[D]. Xidian

University, 2016.

[5] Cai Lijun. Research on Electronic Document Information

Mining System[D]. Hunan University, 2003.

