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Abstract: With the acceleration of urbanization, smart cities are increasingly entering the public consciousness. Beijing, a city 

facing severe water scarcity, has seen some relief in its water supply pressure through the South-to-North Water Diversion 

Project. However, as economic development progresses and the population continues to expand, the demand for water in 

Beijing is still on the rise. Conducting a scientific and rational prediction of water demand is a prerequisite and foundation for 

planning and constructing future water supply projects. This paper embarks on a study of water demand prediction in Beijing, 

China, initially identifying 13 explanatory variables related to economics, society, water usage, and resources. Utilizing data 

from Beijing from 2004 to 2020, a predictive model encompassing both statistical and machine learning models for water 

demand was established. The findings indicate that among all the models considered, the Random Forest model performed the 

best, with R2 scores of 97.9% and 97.8%, respectively. A comparative analysis of the model's predictive performance further 

demonstrates the superiority of machine learning models over statistical models. The results of this study offer valuable 

insights for the planning and construction of future water supply projects in Beijing. They can serve as a reference for the 

formulation of water supply management policies in other cities.  
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1 Introduction 

Over the past few decades, rapid population growth 

and economic development have resulted in a sharp increase 

in water consumption, leading to water shortages in many 

countries [1]. The problem of imbalance between water 

supply and demand, influenced by factors such as 

population size and economic development, is intensifying 

[2]. Global annual water demand has reached approximately 

4600 cubic kilometers, expected to increase by 30%-50% by 

2050 [3]. In response to these challenges, some developed 

countries have begun predictive analyses on future water 

demand [4]. However, we are confronted with issues such as 

continuous population concentration, over-exploitation of 

water resources, and a severe shortfall in water resource 

carrying capacity [5]. Water resources, a vital component of 

natural resources, play a crucial role in societal 

development, significantly influencing the economic 

development of nations and regions [6]. Thus, sustainable 

water resource management is essential for protecting 

limited water resources and averting economic losses, 

making it necessary to have accurate demand forecasting for 

optimizing the planning, and design of water supply systems 

[7]. 

Selecting an accurate model for predicting urban water 

demand remains a significant challenge. Traditional water 

demand forecasting models often utilize statistical models, 

including exponential smoothing, moving averages, linear 

regression, and Seasonal Autoregressive Integrated Moving 

Averages [8-10].  However, due to the nonlinearity in water 

demand datasets, the accuracy of these linear models is 

often reduced [11]. 

With the emergence of artificial intelligence (AI) and 

machine learning technologies, algorithmic models have 

advanced significantly, becoming more efficient, dynamic, 

and robust  [12] Among the nonlinear AI models are various 

sophisticated methods, including Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Deep Neural 

Networks (DNN), and Extreme Learning Machines (ELM) 

[13-15] Despite their advanced capabilities, these AI 

techniques can sometimes produce less than satisfactory 

outcomes  [16] 

In response to these limitations, ensemble methods 

have gained prominence. These techniques enhance 

predictive accuracy by combining multiple base models to 

form a superior predictive model. Prominent examples of 

ensemble methods include Random Forest (RF), Light 

Gradient Boosting Machine (LGBM), and Extreme Gradient 

Boosting (XGBoost). These methods represent a significant 

evolution in the field, offering improved performance by 
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leveraging the strengths of individual models while 

mitigating their weaknesses [17-19]. Despite producing 

accurate results, these ensemble models have been sparingly 

researched in the field of water demand prediction [20]. Our 

study focuses on Beijing as a subject for water demand 

prediction research. Utilizing historical data from 2000 to 

2021, we aim to identify the best water demand prediction 

model through machine learning and ensemble methods 

[21]. This research will assist policymakers in making data-

driven decisions, providing a basis for the rational layout, 

design, and construction of subsequent water supply 

projects, and ensuring that the region can obtain water 

resources stably in the long term [22]. 

2 Literature Review 

2.1 Predicting Water Demand Using Traditional 

Methods 

Choosing the best predictive model in the process of 

urban water demand forecasting is a significant challenge. 

Linear or traditional models such as univariate time series 

have been widely used due to their clear structure and ease 

of implementation and interpretation [23-25]. Arbue & 

Villanu á (2006) built a residential water demand model 

based on a linear model to evaluate the role of water price 

strategies in water resource management in Zaragoza, Spain. 

House-Peters et al. (2010) established a model for single-

family residential water usage in Oregon, USA, using the 

least squares method, identifying key factors influencing 

increased water demand as population growth, climate 

change, and types of urban development. Kontokosta & Jain 

(2015) analyzed the impact of socio-economic and 

population characteristics on water consumption in New 

York at the building level using geographically weighted 

regression. Ashoori et al. (2016) used a multivariate linear 

regression model to examine the impact of residential, 

commercial, industrial, and government water categories on 

Los Angeles' water demand. Polebitsk et al. (2010) used a 

regression model to analyze the impact of population, 

weather, and economic factors on residential water 

consumption in Seattle, USA. Bable et al. (2007) 

constructed a multivariate linear regression model to predict 

household water use in Kathmandu Valley, Nepal, and 

validated the model's applicability. Despite the simplicity of 

linear models, water demand datasets often exhibit varying 

degrees of non-linearity, reducing these models' accuracy 

[26]. 

2.2 Water Demand Prediction Research Based 

on Machine Learning Models 

Non-linear algorithms and machine learning 

techniques, which utilize historical data and various 

parameters, excel in detecting intricate non-linear patterns 

[27]. The adoption of Artificial Intelligence (AI) and 

machine learning innovations significantly augments the 

effectiveness, adaptability, and resilience of these 

algorithmic models [28-30]. The performance of machine 

learning algorithms is primarily influenced by four pivotal 

elements: the predictive model employed, its capabilities 

and constraints, and the selection of parameters for model 

inputs [31]. The spectrum of non-linear AI models includes, 

but is not limited to, extensively analyzed Artificial Neural 

Networks (ANNs), Support Vector Machines, Deep Neural 

Networks (DNNs), and Extreme Learning Machines (ELMs) 

[32-35]. 

Machine learning models are increasingly favored for 

their minimal application restrictions and pronounced 

robustness, demonstrating superior predictive accuracy 

across various domains such as urban infrastructure, credit 

risk assessment, energy, ecological studies, and water 

resource management [36]. 

Despite the acknowledged precision of machine 

learning algorithms over conventional models, there are 

instances where AI methodologies fall short of expectations. 

Ensemble methods, a novel approach, amalgamate different 

foundational models to forge an optimal predictive 

framework. These methods employ strategies like bagging, 

boosting, and stacking. Bagging involves the selection of 

dataset subsets for replacement with randomly trained 

models, whereas boosting assigns increased weight to data 

points misclassified by preceding models, diminishing the 

weight of accurately classified instances. This targeted focus 

on problematic data incrementally enhances model 

performance. Notable implementations of bagging and 

boosting include Random Forest (RF) and Gradient 

Boosting Machine (GBM) [37]. 

In the context of water demand forecasting, Parisouj et 

al. (2020) utilized Support Vector Regression, Artificial 

Neural Networks with back-propagation, and Extreme 

Learning Machines for predicting monthly and daily flow 

rates across four U.S. river basins [38]. Villarin & Rodrigez-

Galiano (2019) applied Classification and Regression Trees 

alongside RF to develop a multivariate prediction model for 

water demand in Seville, Spain, demonstrating the RF 

model's superior predictive capabilities which facilitate a 

deeper understanding of water demand patterns [39]. 

Conversely, stacking methods, exemplified by Stacked 

regressions (STK), consolidate outputs from multiple 

machine learning models into a singular model [40]. 

Nevertheless, these innovative models have not yet gained 

significant traction in water demand forecasting. Emerging 

ensemble model concepts such as RF, Light Gradient 

Boosting (LGB), and Extreme Gradient Boosting (XGB) 

present promising avenues, though their application in water 

demand forecasting remains relatively unexplored [40]. 

2.3 Factors Influencing Water Demand 

Understanding water demand is a complex challenge 

due to a wide variety of influencing factors, including 

climatic, socio-economic, and demographic elements [40]. 

Climatic factors like temperature, humidity, and 
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precipitation significantly affect water use, while socio-

economic aspects like income, water charges, and local 

economic strength play a crucial role in defining the 

demand. Similarly, demographic factors such as population 

characteristics and household composition influence water 

consumption patterns [41]. 

Numerous studies have been conducted to better 

understand and predict urban water demand, incorporating 

these diverse factors. For instance, models developed by Lu 

et al. and Li et al. revealed high correlations of water 

demand with local population and average climate 

conditions, as well as GDP, respectively. Other research has 

expanded the model's features, including education level, 

seasonal changes, and total water supply from utilities, 

providing more detailed and robust predictions [42-43]. 

Recent studies started to utilize advanced techniques such as 

BP neural networks and other machine learning models to 

predict water demand, considering additional factors 

including industrial added value, effective irrigation area, 

and environmental water volume, among others, enhancing 

their accuracy and comprehensiveness. However, these 

studies rarely used integrated models, and the selected 

indicators are not comprehensive enough for predicting 

water demand. 

3. Materials and Methods 

3.1 Study Area 

Beijing, in 2020, had 61.3 billion cubic meters of water 

resources, or 0.21% of China's total. The per capita water 

resource was just 117.8 cubic meters/person, far below the 

recognized extreme water shortage standard of 500 cubic 

meters/person. Despite carrying 8% of China's GDP and 

population, Beijing's water resources account for less than 

1% of the country's total, marking it as a severely water-

scarce region. Rapid urbanization and population growth, 

coupled with rising living standards, are straining the 

existing water infrastructure. The urgent challenge is to 

accurately forecast water demand and strategically plan 

water supply infrastructure improvements to alleviate water 

scarcity. 

3.2 Data collection and processing 

Table 1. Indicators for machine learning and data 

resources 

Title Unit 

Total Water Supply Billion Cubic Meters 

GDP Growth Rate % 

Per Capita GDP (USD) USD/Person 

Precipitation Millimeters 

Total Water Resources Billion Cubic Meters 

Urban Population Ten Thousand People 

Rural Population Ten Thousand People 

Residents' Per Capita 

Disposable Income Yuan/Person 

Urbanization Rate of Permanent 

Residents % 

Primary Industry-Added 

Value Billion Yuan 

Secondary Industry-Added 

Value Billion Yuan 

Tertiary Industry-Added 

Value Billion Yuan 

Before training predictive models, it's critical to 

preprocess collected data due to variable ranges. Large 

differences between maximum and minimum values could 

lead to prediction inaccuracies. This process involves 

feature scaling to ensure model comparability and accuracy. 

While some algorithms like SVM and ANN are sensitive to 

feature scaling, all models are subject to this step for 

consistency. Among common scaling methods like 

normalization and standardization, the former is chosen for 

this study, as it scales data to fall between 0 and 1 and is 

suitable for various machine learning algorithms. 

3.3 Model Selection 

Upon summarizing a broad spectrum of both domestic 

and international literature, we have identified three types of 

models to carry out our study. These include the traditional 

statistical analysis method of Linear Regression, the Support 

Vector Machine (SVM) model, which is a single learning 

machine model, and an ensemble learning machine model 

known as the Random Forest (RF). 

Linear Regression serves as a tool that portrays the 

relationship between the independent variable x and the 

dependent variable y, captured through a linear function. It 

employs a linear model that aims to minimize the sum of 

squared residuals between the actual and estimated values of 

the dependent variable. The relationship between the various 

features and the predicted object is understood via the 

ordinary least squares method, thereby determining the 

linear regression equation. 

The Support Vector Machine (SVM) model is marked 

by its unique ability to create a boundary with the maximum 

margin. It manages this by using a separating hyperplane to 

categorize a dataset, ensuring maximum margin. Through a 

kernel function (φ), SVM transforms the original training set 

into a high-dimensional feature space, which unveils the 

relationship between x and y. The nonlinear separable 

features are substituted by high-dimensional linear 

discriminant functions [44]. 

Lastly, the Random Forest model, as proposed by 

Breiman [45], incorporates the Bagging algorithm for 

feature selection. It extracts samples from the original 

dataset using bootstrap sampling, resulting in individual 

decision trees. The model applies out-of-bag sampling to 

select a feature subset randomly for training and repeats this 

process to build multiple decision trees. The final predictive 

result for each new test sample is achieved by synthesizing 
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the predictions from these multiple decision trees, following 

the principle of majority rules. 

3.4 Model Training and Performance 

Evaluation 

While model training can confirm the model's accuracy 

on the training set, there is also a risk of overfitting in a 

well-trained model. This is when the model exhibits high 

predictive precision for the training samples but fails to 

predict the test samples accurately. In this study, we 

allocated 80% of the data for training and reserved the 

remaining 20% as the test set. However, when we trained 

the model using the training set and validated the model's 

predictive capability using the test set, we found the model 

to be prone to overfitting. 

To address the overfitting issue and gauge model 

performance more effectively, we applied 10-fold cross-

validation to the training data. This involved dividing the 

training set into 10 distinct subsets or "folds". We trained 

the algorithm model 10 times and evaluated it, each time 

using nine folds for training and the remaining one fold for 

assessment. The cross-validation process is akin to a test set 

simulation, and it aids in selecting a model with superior 

performance for evaluation. From the ten scores generated 

by the cross-validation, we calculated an average score and 

standard deviation for prediction. 

Evaluation metrics are crucial to determine the 

accuracy of each model's prediction results. By juxtaposing 

the performance metrics of each model, we can identify the 

best-performing prediction model - in this case, the most 

effective model for predicting Beijing's water demand. 

Given the absence of a universally applicable evaluation 

metric for all models, we decided to employ multiple 

evaluation metrics to assess the predictive effectiveness of 

our model. For this purpose, we utilized three popular 

performance evaluation metrics, namely the Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and Coefficient 

of Determination (R-squared, R2). 

4. Results 

4.1 Descriptive Analysis of Water Demand in 

Beijing 

Table 2. Descriptive Analysis of Water Demand in 

Beijing 

Indicators Std Min 
Medi

an 
Max 

Water Demand 
3.72

E+01 
2.44 

35.1

2 

39.2

0 

GDP Growth Rate 

3.09

0  
1.10 

8.90

0  

14.4

0 

Per Capita GDP (USD) 

7707

.47  

302

2.00 

1246

0.50 

2851

7.00 

Precipitation 

122.

75 

318.

00 

483.

70 

733.

20 

Total Water Resources 
9.87 

16.9

0 

24.1

8  

61.3

0  

Residents' Per Capita 

Disposable Income 

2120

9.91  

922

9.53  

3120

1.83  

7500

2.20  

Urbanization Rate of 

Permanent Residents 
3.43  

77.5

0  

86.0

8 

87.5

5  

Urban Population 

326.

51  

105

7.40 

1715

.50  

1916

.40 

Rural Population 

16.7

1  

250.

80  

283.

85  

306.

20  

Primary Industry-Added 

Value 

25.4

3  

79.3

0  

112.

89  

159.

80 

Secondary Industry-

Added Value 

1774

.86 

102

3.70 

3398

.20 

7389

.00  

Tertiary Industry-Added 

Value 

1004

0.31  

217

4.90 

1254

9.55 

3354

5.20  

From the trend of water demand in Beijing from 2004 

to 2020, it can be seen that the demand for water in Beijing 

has been rising with the increase in years. This is due to the 

difference in water use structure in Beijing. To alleviate the 

non-capital functions of Beijing, some manufacturing 

industries in Beijing have moved to other areas, which has 

led to a gradual reduction in industrial water use in Beijing. 

However, the population of Beijing is continuously growing, 

and the increase in water use for daily life and ecology far 

exceeds the reduction in industrial water use, leading to an 

upward trend in water demand in Beijing. In addition, the 

water demand in Beijing in 2020 shows a downward trend 

compared to 2019, which may be related to the COVID-19 

pandemic that occurred in 2020. Affected by the pandemic, 

some factories stopped production, leading to a decrease in 

industrial water use, and thus reducing the annual water 

demand. The overall situation in Beijing, generally presents 

a trend of first rising and then leveling off, and the rate of 

increase is relatively small, and the numerical fluctuations 

are not large, indicating that the water demand in Beijing 

has remained stable in recent years, which is beneficial for 

the prediction of water demand in this region. 

4.2 The results of machine learning models for 

water demand in Beijing 

Table 3. Machine learning models for water demand in 

Beijing 

Indica

tors 

Linear 

Regression 
SVM 

Random 

Forest 

Train 

Set  

Test 

Set  

Train 

Set  

Test 

Set  

Train 

Set  

Test 

Set  

R^2 0.806 
0.73

9 
0.893 

0.84

2 
0.979 

0.97

8 
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MAE 0.081 
0.09

2 
0.082 

0.07

2 
0.029 

0.03

0  

MSE 0.013 
0.03

1 
0.008 

0.00

7 
0.002 

0.00

1 

RMS

E 
0.113 

0.17

6 
0.092 

0.08

3 
0.041 

0.03

1 

In both the training and testing phases, all three models 

achieved high R^2 scores, with the Random Forest model 

outperforming the other two. The Random Forest model 

achieved the highest R^2 score and the lowest MAE, MSE, 

and RMSE scores. This suggests that the Random Forest 

model provides the most accurate predictions for water 

demand in Beijing in the given scenarios. Notably, while the 

Support Vector Machine model had slightly lower scores 

than the Random Forest model, it still outperformed the 

Regression Analysis model, suggesting it also provides 

reasonably accurate predictions. The Regression Analysis 

model, while still effective, had lower scores than the other 

two models. 

5 Discussion 

Beijing faces a future water resource gap between 

supply and demand. In addition to relying on water transfer 

projects like the South-North Water Transfer Project to 

address water shortages, it is also essential to manage water 

resources internally through engineering planning and 

construction to enhance the utilization rate of freshwater 

resources. Currently, China is vigorously promoting the 

pilot construction of sponge cities to collect and utilize 

rainwater resources effectively. A sponge city is designed to 

absorb, store, infiltrate, and purify water during rainy 

periods and release the stored water for use when needed, 

demonstrating good "resilience" in adapting to 

environmental changes and responding to natural disasters. 

The construction of sponge cities mainly involves 

engineering techniques such as infiltration, storage, 

purification, use, and discharge of rainwater, thereby 

improving the utilization rate of water resources. During the 

rainy season, the abundance of surface water in cities can be 

infiltrated and purified through "sponge bodies" such as 

roads and green spaces, storing the rainwater. In times of 

drought or water scarcity, the stored rainwater can be 

released and utilized, thus alleviating the urban water supply 

and demand contradiction and meeting part of the water 

demand. Beijing should actively draw on the experience of 

sponge city pilot construction, integrating sponge city 

construction with water-saving projects to promote the 

development of green and water-saving cities. In 2016, 

Beijing was selected as one of the second batch of sponge 

city pilot cities. Tongzhou District in Beijing has developed 

its unique sponge city construction model through five years 

of practice and exploration, planning that 80% of the built-

up area in Tongzhou will meet sponge city construction 

requirements by 2030. Tianjin has designated areas such as 

Jiefang South Road and Sino-Singapore Tianjin Eco-City as 

pilot zones, planning to construct 15 sponge city 

demonstration areas. These pilot areas have been completed, 

bringing social and economic benefits to the region. 

Facing the challenge of water scarcity in Beijing, 

relying solely on external water transfer to meet internal 

demand is not a sustainable solution. It remains necessary to 

combine internal water-saving measures with national or 

regional policies. Integrating water-saving projects with 

sponge city construction can enhance the utilization rate of 

rainwater resources and reduce unnecessary waste of water 

resources [46]. Sponge city construction focuses on the 

management of rainwater, differing from traditional urban 

construction models. Traditional rainwater management 

systems in China primarily aim to discharge rainwater 

through pipelines without considering its recycling, leading 

to water resource waste. In contrast, sponge city 

construction uses permeable materials and green spaces to 

collect rainwater, avoiding flood disasters while collecting 

water. Through water-saving projects, rainwater resources 

can be applied to ecological, industrial, or agricultural water 

use, saving freshwater resources while enhancing the 

utilization rate of rainwater[47,48]. In its future 

development, Beijing should combine water-saving projects 

with sponge city construction to promote the development 

of green and water-saving cities. 

This paper employs machine learning methods to 

select the optimal water demand prediction model, offering 

suggestions for future water supply engineering planning 

and construction in Beijing. These recommendations could 

serve as valuable references for formulating water supply 

management policies in Beijing. However, this study has 

some limitations that need to be addressed in future 

research. This paper only examines Beijing's total annual 

water demand without further segmentation into domestic, 

ecological environment, industrial, and agricultural water 

use, which warrants separate investigations to identify key 

factors influencing these variations. Future research could 

segment water use types, providing scientifically sound 

suggestions for different water uses. This study focuses on 

Beijing with a relatively small dataset of fewer than 100 

samples. Future studies should consider using larger datasets 

covering all provinces and cities in China to predict national 

water demand and verify the model's predictive accuracy. 

This paper selects 13 factors influencing water demand 

based on existing research, but the consideration of factors 

might not be comprehensive, such as wastewater reuse 

volume, sewage reuse volume, and average annual 

temperature, which also affect annual water demand. A 

more comprehensive selection of influencing factors would 

enhance the model's predictive accuracy. 

6 Conclusion 

Water scarcity has become a hot issue for major cities 

worldwide. The accuracy of water demand forecasts is 

directly related to the planning and construction of water 

supply projects. Therefore, accurate water demand 

forecasting helps water departments and suppliers recognize 
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the supply and demand gap in Beijing, facilitating the 

formulation of reasonable water supply policies and the 

execution of water supply engineering planning and 

construction to maintain the balance of urban water 

resources, preventing waste and shortage. This paper 

focuses on Beijing, comparing statistical models and 

machine learning models to identify the best water demand 

prediction model. The analysis of Beijing's water demand 

from 2004 to 2020 established three statistical and machine 

learning models—regression analysis, support vector 

machine, and random forest—based on economic, social, 

water use, and resource availability indicators for 

forecasting water demand. The models were evaluated using 

MSE, MAE, and R2 scores. The results indicate that among 

all considered models, the random forest model performed 

the best, with R2 scores of 97.9% and 97.8%, respectively. 

The comparison of model performances also demonstrates 

the superiority of machine learning models over statistical 

models in predictive accuracy. 
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