
Journal of Industrial Engineering and Applied Science

ISSN 3005-6071 (Print) | ISSN 3005-608X (Online) | Vol. 2, No. 2, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES PRESS 34

Design of Disaster Recovery and Load Balancing Strategies

in Traditional Centralized Distributed Web Systems

SONG, Qingqing 1* WU, Zhen 2 XIA, Shaoliang 1

1 Belarusian State University, Belarus
2 Nanjing University of Aeronautics and Astronautics, China

* SONG, Qingqing is the corresponding author, E-mail: fpm.sunC@bsu.by

Abstract: This paper proposes an effective disaster recovery strategy and load balancing strategy for web systems based on

traditional centralized distributed architecture, which are widely used in small and medium-sized enterprises. In the disaster

recovery strategy, we have designed a global backup strategy and single node backup strategy to adapt to different system

requirements and fault recovery scenarios. In the load balancing strategy, we take the database as the starting point, calculate

the load proportion of task execution nodes, effectively determine the load status of each task execution node, and make the

load of each task execution node in the distributed system tend to be balanced. The research results of this paper have certain

reference value for improving early developed web systems with the same architecture. Future research will focus on

optimizing the efficiency of disaster recovery strategies, improving the accuracy of load judgment, and exploring innovative

methods to enhance the scalability and stability of web systems based on centralized distributed architecture.

Keywords: Centralized distributed architecture, WEB system, Disaster recovery strategy, Redundancy strategy, Load

balancing, Database Load.

DOI: https://doi.org/10.5281/zenodo.10836116

1 Introduction

With the vigorous promotion of information

technology construction on a global scale, the application

scope of information technology is increasingly expanding.

Modern information technology is not only widely used in

emerging technology enterprises, but also beginning to

penetrate into traditional industry enterprises. A large

number of small and medium-sized traditional industry

enterprises have begun to actively explore or have integrated

information technology into their human resource

management, business processes, resource allocation, and

financial management in the form of information

management systems [1].

However, due to various limitations such as cost,

efficiency, and scale requirements, many small and medium-

sized enterprises are still using web systems based on

traditional centralized distributed architectures [2]. These

types of systems are usually built earlier and have relatively

simple functions, thus lacking effective disaster recovery

strategies [3] and load balancing strategies [4]. With the

increasing number of users and the increasing importance of

data in enterprise operations, it has become a widespread

demand to transform these web systems based on traditional

centralized distributed architecture in order to ensure data

security and efficient system operation.

This paper aims to design and implement effective

disaster recovery and load balancing strategies for the

transformation process of such systems, in order to meet the

needs of enterprises for data security and system efficiency.

We will delve into the design principles of two strategies,

analyze their effectiveness in practical applications, and

propose possible optimization directions, in order to provide

valuable references for future research and practice.

2 Centralized Distributed

Architecture

Centralized distributed architecture, also known as

centralized star architecture [5], is a special type of

distributed system architecture characterized by the presence

of a central node responsible for coordinating and managing

the workflow and task allocation of the entire system. In this

architecture, other nodes act as child nodes, responsible for

executing tasks assigned by the central node and returning

the results to the central node.

In a centralized distributed architecture, nodes in a

distributed cluster can be divided into two main roles based

on their roles: task control nodes and task execution nodes.

Task control nodes are usually responsible for distributing

tasks and monitoring the progress of task execution nodes.

When the task execution node is idle, the task control node

will assign tasks to it; When the task execution node is

unable to function properly, the task control node will

remove it from the system and assign its tasks to other task

Journal of Industrial Engineering and Applied Science

ISSN 3005-6071 (Print) | ISSN 3005-608X (Online) | Vol. 2, No. 2, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES PRESS 35

execution nodes. In addition, task control nodes may only be

responsible for generating tasks without assigning them, and

each task execution node may spontaneously collect tasks.

The reason why centralized distributed architecture is

widely used is that its architecture design is simple. The

advantages of centralized distributed architecture are mainly

the small number of devices, simple architecture design, low

coupling between universality and application, flexible

resource scheduling, and easy deployment.

Although the advantage of a centralized distributed

architecture lies in its simple architecture design, this does

not mean that it has no drawbacks. In fact, there are also

some challenges and limitations to a centralized distributed

architecture. In task control nodes, if the processing capacity

of the task control node is not sufficient to efficiently

control the operation of the entire system, the performance

and efficiency of the system may be affected. This requires

us to fully consider and evaluate the processing ability of

task control nodes, especially the judgment of task execution

node status, when designing and implementing a centralized

distributed architecture. How to handle single point of

failure in task execution nodes is also a challenge. If a task

execution node fails, it may lead to partial functional failure

of the system or affect the efficiency of system operation.

To ensure the stability of system functionality and

efficiency, we need to set up effective disaster recovery

plans for task execution nodes.

3 Strategy Design

3.1 Disaster Recovery Strategy Design

This paper divides task execution nodes into two types,

one is a regular node and the other is a backup node. The

function and data of the backup node are consistent with the

corresponding regular node.

Task A1

Task A2

Task A3

Task B1

Task B2

Task B3

Task Control Node (Global Backup Strategy)

Task A

Execution Node

Task B

Execution Node

Global Backup
Node

Executable Task
A and Task B

Figure 1 Global backup strategy

In order to adapt to different system requirements and

fault recovery scenarios, we have designed and implemented

two different disaster recovery strategies: global backup

strategy and single node backup strategy. Among these two

strategies, the design inspiration for the single node backup

strategy comes from the RAID1 strategy in independent

redundant disk arrays (RAID) [6], which improves data

reliability and system recovery ability through mirrored

backup.

As shown in Figure 1, in the global backup strategy,

we have set up a dedicated global backup node that can

perform all the functions of task execution node A and task

execution node B. This means that no matter which task

execution node fails, we can replace its function with a

global backup node to ensure the continuous operation of

the system. However, in this strategy, if multiple nodes fail,

due to their shared global backup nodes, it will inevitably

lead to a decrease in the operational efficiency of the

system.

Task A1

Task A2

Task A3

Task B1

Task B2

Task B3

Task Control Node (Single Point Backup Strategy)

Task A

Execution

Node

Task B

Execution

Node

Single Point
Backup Node

Executable
Task A

Single Point
Backup Node

Executable
Task B

Figure 2 Single node backup strategy

In the single node backup strategy, as shown in Figure

2, we set a corresponding backup node for each task

execution node. Each backup node is only responsible for

implementing the functions of its corresponding task

execution node, which means that the function of the backup

node is a complete mirror of the task execution node it backs

up. This strategy can ensure that the operational efficiency

of the system does not decrease in the event of multiple

node failures.

In this strategy, attention should be paid to

distinguishing whether the task execution nodes in the

system are primarily functional services or data storage. If

functional services are the main focus, in order to ensure

service quality and avoid compatibility issues, a single point

backup strategy should be considered; If data storage is the

main focus, based on cost considerations, a global backup

strategy can be considered. However, it is worth noting that

when a node failure occurs, data should be promptly

restored from the global backup node to prevent damage to

the global backup node.

3.2 Load Balancing Strategy

The load balancing strategy is mainly applied to the

Journal of Industrial Engineering and Applied Science

ISSN 3005-6071 (Print) | ISSN 3005-608X (Online) | Vol. 2, No. 2, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES PRESS 36

task control nodes in the distributed architecture of the

system [7], ensuring that when assigning tasks, it can

balance the load of each task execution node in the

distributed system.

In the current system, most WEB systems belong to

query intensive systems, which means that most of the

operations performed in the system are query operations on

the database.

So when making load judgments on various task

execution nodes in the system, the query volume and data

volume of each table in the database of that node are used as

the main basis for judgment. By conducting performance

benchmark tests on the task execution node, the maximum

number of queries that can be processed per second for each

table in the database of that node at different data volumes is

determined. The current number of queries per second in the

system is compared to the maximum number of times the

system can query each data table per second, and the current

load proportion of the system is ultimately determined.

After obtaining the load proportion of all task

execution nodes, select the task execution node with the

lowest current load based on the load proportion to prioritize

task execution; Select the task execution node with the

highest current load proportion to temporarily suspend task

execution.

The core point of this strategy is to determine the

maximum number of times the system can query each data

table per second. Essentially, it measures the capacity of a

web server under actual load, with the database at its core

[8]. After calculating the number of seconds required for

querying the data form, taking the reciprocal of the data will

determine the number of times the system can query the

table per second.

The parameters involved in the implementation

process of the strategy described in this paper are shown in

Table 1.

Table 1. The parameters in the formula and their

meanings

Parameter

Name
Meaning

DV The amount of data in this data table

Time System runtime

T(n)

The time required to perform a query

operation when there are n records in the

data table

C(s)
The number of records in a data table when

the query time is s seconds

S(t)

The maximum number of concurrent

queries that can be completed on this table

within time t

QT
The cumulative number of data table

queries in this table

QPS
The number of queries per second for this

table

SPQ
The number of seconds required for one

query in this table

SC
The maximum number of queries that can

be processed per second in this table

The calculation methods for each parameter in the

formula are shown in Table 2.

Table 2. The calculation method of parameters in the

formula

Parameter

Name
Formula

QPS QT/Time

SPQ (1 + DV/C(2 ∗ T(0))) ∗ T(0)

SC S(SPQ)/SPQ

After completing the parameter calculation, the load

proportion of the table can be obtained, as shown in formula

(1).

𝐿𝑜𝑎𝑑(𝑡𝑎𝑏𝑙𝑒) =
𝑄𝑃𝑆

𝑆𝐶
 (1)

The overall load proportion of the task execution node

is the sum of the load proportions of each data table, and the

calculation formula is shown in (2).

NodeLoad = ∑ 𝐿𝑜𝑎𝑑(𝑡𝑎𝑏𝑙𝑒𝑖)𝑛
𝑖=1 (2)

Where n represents the number of data tables in the

database.

4 Discuss

The disaster recovery strategy and load balancing

strategy implemented in this article are relatively basic, and

are designed for query intensive centralized distributed

WEB systems. In non query intensive systems or web

systems without databases, the strategy proposed in this

article may not be applicable.

In disaster recovery strategies, more in-depth

discussions can be conducted on how to achieve node

redundancy more efficiently and with fewer additional

nodes; In the load balancing strategy, the strategy described

in this paper does not consider peak load and concurrent

access situations, so peak load and concurrent access

situations considerations should be included in its practical

application. At the same time, this paper focuses more on

theoretical scheme design and does not verify the accuracy

of load balancing strategies. In the future, it is hoped that

scholars can verify its accuracy based on this article and

improve it according to the verification results.

5 Conclusion

This paper proposes a disaster recovery and load

balancing strategy for centralized distributed web systems,

Journal of Industrial Engineering and Applied Science

ISSN 3005-6071 (Print) | ISSN 3005-608X (Online) | Vol. 2, No. 2, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES PRESS 37

which is used to improve early developed web systems with

the same architecture.

In this paper, we used two schemes to design disaster

recovery strategies. It is recommended to adopt a single

point backup strategy when placing greater emphasis on

system stability, and a global backup strategy when placing

greater emphasis on cost control. In the load balancing

strategy, we calculate the load proportion of task execution

nodes to effectively determine the load status of each task

execution node, and make the load of each task execution

node in the distributed system tend to be balanced.

Further research should focus more on the efficiency

of disaster recovery strategies and the accuracy of load

assessment. In addition, we also need to explore new

methods and technologies to improve the scalability and

reliability of centralized distributed WEB systems, such as

finding a transformation plan from centralized distributed

architecture to microservice architecture WEB systems [9].

Acknowledgments

The authors thank the editor and anonymous reviewers

for their helpful comments and valuable suggestions.

Funding

Not applicable.

Institutional Review Board

Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

Conflict of Interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher's Note

All claims expressed in this article are solely those of

the authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.

Author Contributions

Not applicable.

About the Authors

SONG, Qingqing

Faculty of Applied Mathematics and Computer Science;

Belarusian State University; 4 Nezavisimosti Avenue, Minsk

220030, Belarus; e-mails: fpm.sunC@bsu.by

WU, Zhen

Nanjing University of Aeronautics and Astronautics;

No. 29, Yudao Street, Qinhuai District, Nanjing City, Jiangsu

Province 210016, China; e-mails: 13wuzhen@sina.com

XIA, Shaoliang

Faculty of Applied Mathematics and Computer Science;

Belarusian State University; 4 Nezavisimosti Avenue, Minsk

220030, Belarus; e-mails: fpm.sya@bsu.by

References

[1] Laudon, K. C., & Laudon, J. P. (2017). Essentials of

management information systems. Pearson.

[2] Elser, A. (2005). Reliable distributed systems:

technologies, web services, and applications. Springer

Science & Business Media.

[3] Memon, N., Vighio, M. S., & Hussain, Z. (2019). ‘Web

services failures and recovery strategies: A review.

Indian J. Sci. Technol, 12(43), 1-6.

[4] Jader, O. H., Zeebaree, S. R., & Zebari, R. R. (2019). A

state of art survey for web server performance

measurement and load balancing mechanisms.

International Journal of Scientific & Technology

Research, 8(12), 535-543.

[5] Al Ayubi, S. U., & Nugrahaningsih, N. (2009,

December). Centralized-star architecture of web service

node as integration solution in complex organization. In

Proceedings of the 11th International Conference on

Information Integration and Web-based Applications &

Services (pp. 599-603).

[6] Li, D., Cai, H., Yao, X., & Wang, J. (2005). Exploiting

redundancy to construct energy-efficient, high-

performance RAIDs. Department of Computer Science

and Engineering University of Nebraska-Lincoln.

[7] Ghomi, E. J., Rahmani, A. M., & Qader, N. N. (2017).

Load-balancing algorithms in cloud computing: A

survey. Journal of Network and Computer Applications,

88, 50-71.

Journal of Industrial Engineering and Applied Science

ISSN 3005-6071 (Print) | ISSN 3005-608X (Online) | Vol. 2, No. 2, 2024

Published By SOUTHERN UNITED ACADEMY OF SCIENCES PRESS 38

[8] Banga G, Druschel P. Measuring the capacity of a Web

server under realistic loads[J]. World Wide Web, 1999,

2(1-2): 69-83.

[9] Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M.,

& Al-Hammadi, Y. (2016, December). The evolution of

distributed systems towards microservices architecture.

In 2016 11th International Conference for Internet

Technology and Secured Transactions (ICITST) (pp.

318-325). IEEE.

