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1 INTRODUCTION 

Federated Learning (FL) emphasizes decentralized data 

processing across multiple devices or clients without 

transferring raw data to a central server. By preserving data 

privacy and reducing communication costs, FL enables 

organizations to collaborate on training machine learning 

models while maintaining control over their proprietary data. 

However, as privacy and data governance regulations evolve, 

there is an increasing demand for mechanisms that allow 

entities to have their data removed from these trained models. 

In heterogeneous network, it means we need an opposite 

mechanism to the distributed learning process to 

systematically eliminate certain part of data and models, 

where machine unlearning comes into play. 

Machine Unlearning on the other end of the table, 

focuses on erasing the influence of specific data points from 

trained models, ensuring compliance with data removal 

requests, such as those stipulated by regulations like the. 

When federated learning meets machine unlearning, it creates 

a new frontier in ensuring that privacy concerns are 

adequately addressed in distributed systems. The process 

could be data-driven, or model driven. The two processes are 

not totally opposite, where individual components may even 

be shared or re-usable. The synergy between these two 

approaches brings unique challenges and opportunities, 

especially in terms of balancing efficiency, accuracy, and 

compliance with privacy requirements. 

2 REVIEW OF PAST LITERATURE 

Before we work on federated learning and machine 

unlearning applications, let’s review the relevant advances in 

heterogeneous machine learning, federated learning, machine 

unlearning and federated unlearning in sequence. 

2.1 HETEROGENEOUS MACHINE LEARNING 

Heterogeneous networks ([1] and [2]) refer to systems 

with varying connectivity, device capabilities, and 

computational resources, which is a critical issue in federated 

learning. FL systems often involve a wide variety of devices, 

ranging from high-powered servers to low-energy mobile 

phones, connected over different network conditions. This 

heterogeneity affects model updates: In federated learning, 

some devices may have limited bandwidth or lower 

computational capabilities, which means they can only 

contribute partial or less frequent updates. This impacts the 

aggregation of model updates and the efficiency of the overall 

learning process. The heterogeneous network environment 

can introduce vulnerabilities during communication between 

clients and the central server, which can have implications for 

both federated learning and unlearning processes, especially 

in environments where secure data transmission is essential. 

This is further illustrated in [3].  

Heterogeneous networks and graph neural networks 

(GNNs) are advanced concepts within the broader field of 

machine learning, particularly within graph-based learning. 

Both are essential for modeling and analyzing complex data 

structures, where relationships between data points are not 

uniform. Their relevance to machine learning lies in their 

ability to handle structured data that goes beyond traditional 

grid-like data used in conventional ML techniques (such as 

images or tabular data). In the past, we have seen so much 

success in using Graph Neural Network (GNN) in resolving 
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image and tabular data problems as shown in [4,5,6] and [7]. 

The key idea behind GNNs is to aggregate information from 

a node’s neighbors to update the node’s representation. This 

aggregation allows the model to learn from both local and 

global structures within the graph. A typical GNN follows the 

message-passing paradigm, where each node iteratively 

updates its feature vector by combining its own features with 

those of its neighbors. 

In a social network, the nodes might represent 

individuals, and the edges might represent friendships or 

connections. A GNN can learn to predict behaviors like 

influence or detect community structures by considering the 

relationships (edges) and node features (such as user interests 

or demographics). 

GNNs have broad applications in areas like drug 

discovery, social network analysis, and recommendation 

systems, where data is inherently structured as a graph. GNNs 

are increasingly used in areas requiring an understanding of 

relationships between entities, which goes beyond the 

capabilities of traditional machine learning methods, for 

example Wang et al. [8] proposed GNN for sports analytics. 

Standard GNNs are typically designed for 

homogeneous graphs, where nodes and edges are of a single 

type. However, heterogeneous networks require GNNs to be 

extended to account for multiple types of nodes and edges. 

This extension leads to Heterogeneous Graph Neural 

Networks (HetGNNs), which are specifically tailored to 

heterogeneous graphs. 

In HetGNNs, the model must process different types of 

nodes and edges, capturing the distinct relationships and 

interactions between them. To achieve this, HetGNNs use 

different message-passing rules for each type of node and 

edge, ensuring that the diversity in the graph’s structure is 

properly reflected in the learned representations according to 

[9] and [10]. Xu et al. [11] showed very promising results in 

detecting financial risk using heterogeneous GNN. Li et al.  

[9] constructed LSTM recurrent neural networks to simply 

the heterogeneous network representation. 

2.2 FEDERATED LEARNING 

Federated Learning (FL) operates by distributing the 

model training process across multiple decentralized clients, 

often edge devices, while keeping their data localized. Each 

client independently computes model updates based on its 

data and shares these updates with a central server, which 

aggregates them to improve the global model. This process 

allows organizations to create models without aggregating the 

raw data centrally, thereby reducing the risk of privacy 

violations or data breaches [12]. 

Federate learning features privacy-preserving. Since the 

data remains on the clients, FL reduces the risk of data 

breaches and complies with privacy regulations like GDPR 

[13]. It also features decentralized training: FL leverages 

distributed data from various devices, making it more 

scalable than traditional centralized learning. In federate 

learning, instead of transmitting data, clients send model 

updates (e.g., gradients) to a central server, which aggregates 

them into a global model. 

There are three common types of Federated Learning 

[14]: 1. Horizontal Federated Learning: Data across different 

clients shares similar features but differs in the samples (e.g., 

mobile users using the same application). 2. Vertical 

Federated Learning: Different clients have complementary 

features about the same set of instances (e.g., different 

institutions sharing data about the same individuals). 3. 

Federated Transfer Learning: Combines knowledge from 

different datasets to improve performance in settings where 

clients have different feature spaces and sample sets. 

2.3 MACHINE UNLEARNING 

Machine unlearning refers to the process of selectively 

removing the influence of specific data points from a machine 

learning model after it has been trained. This concept is 

especially important when it comes to handling sensitive data, 

such as in cases where a user requests that their data be 

deleted for privacy reasons (e.g., to comply with data 

regulations [15]. The goal of machine unlearning is to ensure 

that once data is deleted, it has no lingering effects on the 

model’s behavior, essentially making the model behave as if 

the data was never included during training. 

Traditional machine learning models, once trained, 

integrate patterns and relationships from the data and are 

generally not designed to "forget" specific data points [16]. 

Retraining the model from scratch after removing a few data 

points is computationally expensive and often impractical for 

large-scale models. Machine unlearning aims to address this 

problem by enabling efficient removal of specific data 

without the need for complete retraining. 

The process of machine unlearning involves modifying 

the machine learning model to reverse or undo the effects of 

certain data points. Various techniques are used, such as 

Exact Unlearning and Approximate Unlearning [17]. Exact 

unlearning directly removing the contribution of specific data 

points from the model, maintaining the model’s accuracy 

while ensuring that the specified data no longer influences the 

model. Approximate unlearning implements methods that 

approximate the removal of data points but may not fully 

guarantee that all influences of the data are completely 

eliminated. This method can be faster but less precise. 

Adversarial training introduced in [18] and [19] can be used 

as an effective method for machine unlearning. Attacks to 

machine unlearning also occurs frequently as according to 

[20,21] and [22]. Some de-centralized approach opens our 

door to the federated unlearning. 

2.4 FEDERATED UNLEARNING 

For heterogeneous learning, Wu et al. [23] initiates a 

federated unlearning way that leverages knowledge 

distillation to remove the influence of specific clients from a 
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global model. As indicated by Shaik et al. [24], the federated 

unlearning approach treat the global model as a teacher to 

guide the training of an unlearning model. The approach 

reduces client-side computational pressure and enhanced the 

model generalization. Zhu et al. [25] proposes a similar 

federated unlearning framework called FedLU, which is for 

heterogeneous knowledge graph embedding learning. The 

model enables di-directional transfer of knowledge between 

local and global levels. Due to security attack in the 

unlearning process, Li et al. [26] uses a fine-tuning process 

guided by a teacher network to achieve unlearning at the 

student network. 

In machine unlearning within heterogeneous networks, 

some additional challenges are mainly in unlearning 

efficiency and coordination in unlearning. Devices with 

lower computational power or limited network connectivity 

might not be able to perform unlearning requests promptly. 

This delays compliance with privacy regulations and can 

introduce inconsistencies in how different clients handle 

unlearning. 

Federated unlearning within a heterogeneous network 

requires coordination across diverse devices, ensuring that 

the impact of unlearning a specific data point is reflected 

across the entire system. 

In federated learning, heterogeneity manifests in the 

form of different data distributions and varying device 

capabilities, making it crucial to develop strategies that 

accommodate these differences. When integrating machine 

unlearning into such systems, this heterogeneity adds 

complexity to the unlearning process, requiring specialized 

methods for handling both data and model diversity 

efficiently. As the fields of FL and unlearning continue to 

evolve, addressing the challenges of heterogeneity will be 

essential to maintaining system performance and ensuring 

privacy compliance. 

3 METHDOLOGIES FOR 

INTEGRATING FEDERATED 

LEARNING AND MACHINE 

UNLEARNING 

3.1 MOTIVATION 

The intersection of federated learning and machine 

unlearning presents several unique challenges, which arise 

from the distributed nature of the former and the stringent 

privacy requirements of the latter. 

Data Distribution and Decentralization: In federated 

learning, data remains distributed across multiple clients, 

making it difficult to trace back which data points influenced 

the global model. This decentralization complicates the 

process of identifying and removing specific data points 

when an unlearning request is made. As a result, federated 

unlearning methods must be designed to handle such 

decentralized environments effectively. 

Communication and Computational Overhead: 

Implementing machine unlearning in a federated system can 

significantly increase communication and computational 

costs. For example, when an unlearning request is received, a 

federated system may need to communicate with multiple 

clients to adjust their local models, which can be resource 

intensive. Balancing the trade-off between computational 

efficiency and the accuracy of the unlearning process is a key 

challenge in federated learning systems. 

Privacy and Security Risks: Both federated learning 

and machine unlearning are designed to enhance privacy. 

However, the unlearning process itself can introduce new 

privacy risks. For instance, unlearning requests could be 

exploited by adversaries to infer sensitive information about 

the training data or model behavior. Additionally, ensuring 

that unlearning does not leak information about the removed 

data point is critical, as failure to do so could compromise 

user privacy and trust. 

Model Performance and Utility: Machine unlearning 

can degrade model performance if not carefully managed. In 

a federated learning context, ensuring that the global model 

retains its predictive capabilities after removing specific data 

points is particularly challenging. As data points are removed, 

the model might require significant retraining to maintain its 

accuracy, leading to potential trade-offs between privacy 

compliance and model utility. 

3.2 DIFFERENTIAL PRIVACY WITH UNLEARNING 

A bank uses a machine learning model to assess 

customer creditworthiness. By applying DP with Unlearning, 

if a customer requests the removal of their data, the model’s 

predictions remain valid while complying with privacy and 

legal standards. 

ALGORITHM 1. DIFFERENTIAL PRIVACY UNLEARNING 

Input: N clients, global model M, privacy budget ε, noise variance 

σ^2 

Initialize: M_0 (initial global model), privacy budget ε 

 

For each round t in 1 to T: 

    For each client k in parallel: 

        // Local training with differential privacy 

        Train local model M_k on client k's data 

        Compute gradient G_k 

        Add noise: G_k' = G_k + Noise(σ^2)  // Add noise for 

differential privacy 

         

        Send the noisy gradient G_k' to the server 

 

    // Server aggregation 

    Aggregate global model: M_(t+1) = M_t + η * Σ(G_k') 

     

    // Unlearning request for client c 

    If unlearning request received from client c: 

        Compute impact of client c's data on M_(t+1) based on 

differential privacy constraints 

        Adjust model parameters: M_(t+1) -= η * Gradient(c)  
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        Update privacy budget ε 

 

Return: Final global model M_T 

Differential Privacy with Unlearning (Algorithm 1) 

adds noise to the model updates from each client to obscure 

the contribution of individual data points. It ensures privacy 

while facilitating unlearning by limiting the impact of any 

single data point. This differential privacy approach can 

potentially apply to studies in financial market treasury 

trading as illustrated in Li et al. [9]. The LSTM network in [9] 

would be an excellent benchmark for differential privacy with 

unlearning. 

3.3 CLIENT-SIDE UNLEARNING 

Client-side unlearning refers to the process of removing 

specific data or user contributions directly at the client's side, 

without requiring the central server to retrain or modify the 

global model extensively. This approach is particularly 

relevant in decentralized systems like Federated Learning 

(FL), where training occurs locally on clients' devices (e.g., 

smartphones, edge devices, or organizational servers). 

Instead of removing the influence of data on the central 

server, the clients independently handle the removal of their 

data from the locally trained model and send updates 

reflecting the unlearned data to the central server. This 

distributed approach helps to preserve privacy, ensure 

minimal retraining costs, and reduce communication 

overhead, making it both computationally efficient and 

privacy compliant. This idea is referred to the same as 

presented by Sun et al. [10]. 

ALGORITHM 2. CLIENT-SIDE UNLEARNING 

Input: N clients, global model M, local models M_k, unlearning 

request from client c 

 

For each round t in 1 to T: 

    For each client k in parallel: 

        // Local training 

        Train local model M_k on client k's data 

        Compute local gradient G_k 

        Send G_k to the server 

 

    // Server aggregation 

    Aggregate global model: M_(t+1) = M_t + η * Σ(G_k) 

 

    // Unlearning request for client c 

    If unlearning request from client c: 

        // Client-side unlearning 

        Remove client c's data from local model M_c 

        Recompute gradient G_c' on M_c without unlearned data 

        Send unlearned gradient G_c' to the server 

        Server updates global model: M_(t+1) -= η * (G_c - G_c') 

 

Return: Final global model M_T 

Here's a step-by-step explanation of how Client-Side 

Unlearning (Algorithm 2) function in a Federated Learning 

environment:  

During the Initial Training Process: In the Federated 

Learning setup, clients (e.g., smartphones, organizational 

servers) download the initial global model from the central 

server. Each client trains the global model on its local dataset, 

computing gradients based on its data, which reflect the 

contribution of the local data to the global model. The clients 

then send the gradients or model updates back to the central 

server, which aggregates these updates to form a new global 

model. 

When Unlearning Request arrives: A client might 

request to unlearn a portion of its local data, either because 

the data was erroneously included, the user has requested to 

remove their data (e.g., "right to be forgotten"), or due to legal 

and privacy regulations. Upon receiving the unlearning 

request, the client recalculates its local model without the 

specified data. This step is done without sharing the raw data 

with the central server, ensuring privacy. 

In the stage of Recalculation of Gradients: The client 

re-trains its local model based on the remaining data after the 

unlearning request is processed. It calculates new gradients or 

updates (representing the influence of the modified local data) 

and sends the "unlearned" gradients to the central server. The 

server can then subtract the old gradients (which included the 

unlearned data) and add the updated gradients, thereby 

ensuring that the global model no longer reflects the 

contribution of the unlearned data. 

For the last Model Aggregation step: The central server 

aggregates these updated gradients, removing the influence 

of the unlearned data on the global model. Importantly, this 

method avoids the need for the server to retrain the entire 

global model from scratch, making it an efficient approach 

for large-scale systems with many clients. 

While Client-Side Unlearning offers many benefits, it 

also faces some challenges: 1. Data Heterogeneity: Clients 

may have diverse, non-IID (independent and identically 

distributed) data, which can make it more difficult to 

effectively reverse the impact of unlearned data on the global 

model. 2. Communication Overhead: Although client-side 

unlearning reduces retraining on the server, it still requires 

communication between clients and the server to transmit 

updates. In scenarios with frequent unlearning requests, this 

could lead to increased communication overhead. 3. Model 

Accuracy: Removing data from local models and 

recomputing gradients could slightly impact global model 

accuracy, especially if the unlearned data had a significant 

contribution to the model’s performance. 

3.4 GRADIENT-BASED UNLEARNING 

Gradient-Based Unlearning is a technique for removing 

the influence of specific data points from a machine learning 

model by leveraging the model’s gradients. In this approach, 

the contributions made by a particular data point (or set of 

data points) to the trained model are reversed by modifying 

or rolling back the gradients that were computed during 

training. This method allows for the efficient removal of 

data’s impact without requiring complete retraining from 
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scratch. 

The core idea behind gradient-based unlearning is that 

the model's training process can be viewed as a sequence of 

updates applied to the model’s parameters. These updates are 

computed using gradients derived from each training sample, 

which represent the direction and magnitude by which the 

model’s weights need to change to reduce prediction error. 

By systematically removing or adjusting the gradients 

associated with the data points that need to be unlearned, the 

model can revert to a state as if the specific data were never 

included in training. 

ALGORITHM 3. GRADIENT-BASE UNLEARNING ALGORITHM 

Input: N clients, global model M, local models M_k, learning rate 

η 

 

For each round t in 1 to T: 

    For each client k in parallel: 

        // Local training 

        Train local model M_k on client k's data 

        Compute gradient G_k 

        Send G_k to the server 

 

    // Server aggregation 

    Aggregate global model: M_(t+1) = M_t + η * Σ(G_k) 

 

    // Unlearning request for client c's data point d 

    If unlearning request from client c's data point d: 

        // Gradient-based unlearning 

        Identify gradient G_d associated with data point d 

        Reverse its contribution to the model: 

        M_(t+1) = M_(t+1) - η * G_d  // Reverse gradient of d 

 

Return: Final global model M_T 

The gradient-based unlearning in Algorithm 3 can be 

broken down into the following steps: 

1. Gradient Computation During Training: During the 

normal training process, the machine learning model 

learns by updating its parameters (weights) using the 

gradients computed for each training data point. These 

gradients reflect the contribution of each data point to the 

overall model. 

For each data point 𝑥𝑖, the gradient of the loss function 

𝐿(𝑥𝑖)  with respect to the model’s parameters θ is 

computed, denoted as 𝛻Ɵ𝐿(𝑥𝑖) 

2. Tracking and Storing Gradients: To enable efficient 

unlearning, the system stores the gradients associated 

with each data point (or mini batch) during training. These 

gradients can be saved as a history of updates applied to 

the model’s parameters. 

3. Unlearning Request: When a data point 𝑥𝑖 (or a set of data 

points) needs to be unlearned, the system identifies the 

gradients 𝛻Ɵ𝐿(𝑥𝑖) that were computed during the training 

phase. The system calculates the negative of these 

gradients to reverse the effect of the specific data on the 

model’s parameters. This step is essential to "unlearn" the 

contribution made by the data. 

4. Gradient Reversal or Subtraction:  The system applies the 

reverse gradients −𝛻Ɵ𝐿(𝑥𝑖)   to the model’s parameters to 

undo the effect of the training on that particular data point. 

This essentially rolls back the model’s parameters to a state 

as if the data point 𝑥𝑖  had not been included in the training 

process. 

5. Model Adjustment: After adjusting the parameters using 

reverse gradients, the model is updated accordingly. The 

resulting model behaves as if the unlearned data never 

influenced its training, allowing for effective unlearning 

without the need for complete retraining. 

The major benefit of Gradient-Based Unlearning is 

efficiency. Gradient-based unlearning is highly efficient 

compared to full retraining, as it targets specific updates 

related to the unlearned data. This reduces the computational 

cost, especially in large models where retraining would be 

prohibitively expensive. By focusing on reversing specific 

gradients, this approach can scale to large datasets and 

complex models without needing to reconstruct the entire 

model from scratch. 

Since only the contributions of the unlearned data are 

removed, the overall structure and performance of the model 

remain largely intact. This ensures that the model continues 

to perform well without significant degradation after 

unlearning. 

During the implementation of Challenges of Gradient-

Based Unlearning, we are faced with gradient storage: One 

challenge is the need to store gradients associated with each 

data point or batch of data points during training. In large-

scale applications, this can result in significant memory 

overhead, which needs to be managed efficiently. 

Some model architectures, particularly those with 

highly complex layers like deep neural networks, may not 

lend themselves as easily to gradient-based unlearning due to 

the complexity of their gradient calculations. 

In some cases, gradient-based unlearning may only 

provide an approximate reversal of the data’s impact, 

especially when multiple unlearning requests accumulate. 

This could result in minor inaccuracies in the unlearned 

model, which we will not cover in the scope of current study 

3.5 INCREMENTAL LEARNING AND UNLEARNING 

Incremental Learning and Unlearning are two 

complementary processes that enable a machine learning 

model to evolve over time by continually learning from new 

data while selectively forgetting previously learned data upon 

request. The goal of incremental learning is to allow the 

model to adapt to changes in the data distribution without 

needing to retrain from scratch, while unlearning is the 

mechanism to remove specific data points or knowledge that 

should no longer contribute to the model. 

Incremental learning allows a model to continuously 

update its knowledge base with new information without 
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discarding or retraining from the entire dataset. This is crucial 

in dynamic environments where data evolves, and the model 

must remain adaptable and scalable. In this approach: 

The model keeps learning incrementally from new data 

points or batches of data over time. It avoids "catastrophic 

forgetting" by retaining useful knowledge from past data 

while integrating new information. This approach is ideal for 

systems where continuous learning is needed (e.g., online 

learning or dynamic environments with streaming data). 

On the other hand, incremental unlearning deals with 

the systematic and efficient removal of specific knowledge 

learned from data points. This may be needed due to privacy 

regulations (like GDPR or CCPA), error correction, or user 

requests to have their data forgotten. In incremental 

unlearning: Instead of retraining the entire model when data 

needs to be unlearned, the model is adjusted to reverse the 

effect of the specific data points. The model effectively 

"forgets" the contributions of data that need to be removed 

while retaining the rest of the knowledge. This is particularly 

challenging in dynamic systems because the model must 

adaptively handle both learning and unlearning without 

performance degradation. 

ALGORITHM 4. INCREMENTAL LEARNING-UNLEARNING 

ALGORITHM 

Input: N clients, global model M, local models M_k, learning rate 

η, incremental batch size B 

 

For each round t in 1 to T: 

    For each client k in parallel: 

        // Incremental learning 

        Divide client k's data into batches B_1, B_2, ..., B_n 

        For each batch B_i: 

            Train local model M_k on batch B_i 

            Compute gradient G_k_i on batch B_i 

            Send G_k_i to the server 

 

        // Server-side aggregation 

        Aggregate model incrementally: 

        M_(t+1) = M_t + η * Σ(G_k_i) 

 

    // Unlearning request for client c 

    If unlearning request from client c: 

        Identify batches where data from client c is present 

        Recompute local model for these batches without client c's 

data 

        Send unlearned gradients G_c' to the server 

        Server updates global model: M_(t+1) -= η * (Old gradients 

from c - G_c') 

 

Return: Final global model M_T 

Algorithm 4 involves adding new data or knowledge to 

the model in small, manageable portions without retraining 

on the entire dataset: 

Learning from New Data: The model is updated using 

the gradients from new data, while keeping track of previous 

data contributions. 

Adaptive Integration: Techniques such as 

regularization or specific architectures (like elastic weight 

consolidation) are often used to prevent catastrophic 

forgetting. 

Efficient Updating: The system efficiently learns from 

new data without needing access to the full historical data. 

Incremental Unlearning ensures that the model can 

"forget" certain data while retaining other relevant knowledge: 

Identify Data to Be Forgotten: The model identifies 

which data needs to be unlearned based on user requests or 

privacy obligations. 

Reverse the Effect: The model reverts the impact of the 

data to be forgotten, either by subtracting the gradients 

associated with that data or using fine-tuning strategies to 

remove its influence. 

Model Adjustment: The model is adjusted accordingly 

so that the specific data no longer affects its predictions, while 

other data contributions remain intact. 

We also summarized the techniques used in Incremental 

Learning and Unlearning in Algorithm 4. 

Firstly, Elastic Weight Consolidation (EWC) is method 

where important parameters of the model, learned from 

earlier tasks, are consolidated to prevent catastrophic 

forgetting. It helps balance learning and unlearning by 

regularizing new updates. Secondly, regularization penalizes 

large updates to certain parameters to prevent the model from 

drifting too far from its previous knowledge during 

incremental updates. Fine-tuning can be used for unlearning 

specific data, where a model is slightly adjusted to minimize 

the influence of the forgotten data while retaining general 

patterns. 

Incremental learning systems often use memory-based 

techniques to store a small subset of old data that is 

periodically retrained with the new data to retain past 

knowledge. This can help facilitate both learning and 

unlearning. Gradient Reversal for Unlearning is used by 

reversing the gradients of the data to be unlearned, the system 

can remove their contributions incrementally. The integration 

of Incremental Learning and Unlearning offers significant 

advancements for machine learning models operating in 

dynamic, data-driven environments.  

4 CONCLUSION AND FUTURE 

RESEARCH DIRECTION 

The integration of Incremental Learning and Unlearning 

offers significant advancements for machine learning models 

operating in dynamic, data-driven environments. Incremental 

learning ensures that models can adapt and evolve by 

incorporating new data without retraining from scratch, 

making them ideal for real-time applications such as financial 

markets, healthcare, and autonomous systems. Conversely, 

incremental unlearning provides a critical mechanism for 

complying with privacy regulations, allowing users to request 
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the removal of their data from models without compromising 

the system's overall performance. Together, these techniques 

ensure that machine learning systems remain adaptable, 

scalable, and compliant in a rapidly changing world. 

By leveraging approaches like Elastic Weight 

Consolidation (EWC), gradient-based unlearning, and fine-

tuning strategies, it is possible to maintain high model 

accuracy while efficiently integrating or forgetting specific 

data points. These techniques prevent catastrophic forgetting 

in incremental learning scenarios and allow for selective 

removal of data without necessitating expensive retraining 

processes. The application areas for incremental learning and 

unlearning are broad, ranging from online learning systems 

and autonomous vehicles to healthcare and financial fraud 

detection, showing immense potential for deployment across 

diverse fields. 

Despite the promising developments, several challenges 

remain in the integration of incremental learning and 

unlearning, opening the door for future research: 

Scalability in Large-Scale Models: As models grow in 

complexity and size, developing efficient algorithms for 

incremental unlearning that can scale to large datasets 

without affecting performance remains a critical research area. 

Techniques that allow for scalable gradient reversal or 

selective parameter adjustments would be particularly 

valuable. 

Privacy Preservation in Federated Learning: Federated 

learning systems that incorporate both incremental learning 

and unlearning present unique challenges, especially in terms 

of balancing model accuracy with privacy constraints. 

Research could focus on integrating differential privacy 

techniques with unlearning to ensure that users’ contributions 

are securely removed while maintaining model performance. 

Handling Concept Drift: Incremental learning models 

must deal with concept drift — a situation where the 

underlying data distribution changes over time. Future work 

could focus on refining techniques for detecting and adapting 

to concept drift, while ensuring that older, irrelevant data is 

incrementally unlearned to avoid skewing model predictions. 

Real-Time Learning and Unlearning: In real-time 

systems such as financial trading or autonomous driving, the 

model must simultaneously learn from new data and unlearn 

old data without delay. Future research could explore the 

development of lightweight, real-time algorithms that can 

handle both learning and unlearning without compromising 

on efficiency or accuracy. 

Joint Learning and Unlearning Frameworks: Another 

area of interest lies in developing unified frameworks that 

seamlessly integrate both incremental learning and 

unlearning processes. These frameworks would provide an 

end-to-end solution for continuous learning while ensuring 

that unlearning requests are handled in an optimized and 

efficient manner. 

Adversarial Attacks and Robustness: As unlearning 

techniques become more prevalent, they may be targeted by 

adversarial attacks aimed at forcing models to forget critical 

data. Future research could focus on improving the robustness 

of unlearning algorithms against such attacks, ensuring that 

malicious actors cannot exploit these mechanisms to degrade 

model performance. 

In conclusion, the combination of incremental learning 

and unlearning holds significant potential for enhancing the 

flexibility, scalability, and privacy of machine learning 

systems. However, there remain many open research 

questions, particularly in terms of scalability, efficiency, 

privacy preservation, and robustness against adversarial 

threats. Addressing these challenges will unlock the full 

potential of these techniques and pave the way for their 

broader adoption in real-world applications. 
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