
Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 10

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

Hybrid Edge-AI Framework for Intelligent Mobile

Applications: Leveraging Large Language Models for On-

device Contextual Assistance and Code-Aware Automation

HU, Liao 1*

1 Trine University, USA

* HU, Liao is the corresponding author, E-mail: lhu231@my.trine.edu

Abstract: The integration of large language models (LLMs) into mobile development workflows has been fundamentally

constrained by three competing requirements: computational efficiency, contextual awareness, and real-time responsiveness.

While cloud-based LLMs offer unparalleled reasoning capabilities, their reliance on remote infrastructure introduces

prohibitive latency, privacy risks, and energy inefficiencies for mobile environments. Conversely, on-device models, though

responsive and privacy-preserving, often lack the contextual depth required for complex code understanding and automation

tasks. To address these challenges, we present SolidGPT, a hybrid edge-cloud framework that achieves an optimal balance

between these competing demands through three key architectural innovations.

First, we introduce a Markov Decision Process (MDP)-based dynamic routing system that intelligently allocates tasks between

on-device lightweight models (DistilGPT, TinyLLaMA) and cloud-based LLMs (GPT-4). This system evaluates real-time

parameters—including contextual complexity, hardware constraints, and network conditions—to minimize energy

consumption (28.6% reduction) while maintaining high accuracy (91% diagnostic accuracy). Second, our deep integration

with Android’s Model-View-ViewModel (MVVM) architecture enables semantic-aware analysis across UI layouts, business

logic, and runtime logs, bridging the gap between static code analysis and dynamic mobile runtime environments. Third, a

novel prompt engineering pipeline preserves codebase-specific context across execution boundaries, ensuring continuity

between local and cloud processing.

To validate our framework, we conducted a 12-week deployment with United Airlines’ Android application (128,500 LOC),

involving 43 developers across six feature teams. The results demonstrate significant improvements: bug resolution time

decreased by 64.1% (*p*<0.001), cloud API calls were reduced by 56.3%, and 87% of developer queries were resolved with

sub-second latency. Notably, the system maintained a median energy consumption of 0.81mJ/token for on-device operations,

outperforming cloud-only alternatives. These advancements highlight the framework’s ability to harmonize the strengths of

edge and cloud computing while addressing critical challenges in energy efficiency, privacy preservation, and toolchain

integration.

Beyond mobile development, SolidGPT establishes a template for deploying LLM-powered assistants in resource-constrained

edge environments, such as IoT devices and embedded systems. By combining adaptive task allocation, platform-aware

semantic analysis, and context-preserving prompt design, our work paves the way for next-generation AI tools that are both

powerful and pragmatic—capable of scaling across domains without compromising responsiveness or user trust.

Keywords: Edge-Cloud Hybrid AI, Mobile Development Automation, Dynamic LLM Orchestration, Context-Aware

Programming Assistance, On-Device Language Models, Energy-Efficient AI.

Disciplines: Computer Science. Subjects: Software Engineering.

DOI: https://doi.org/10.70393/6a69656173.323935 ARK: https://n2t.net/ark:/40704/JIEAS.v3n3a02

1 INTRODUCTION

The proliferation of large language models (LLMs) has

revolutionized software engineering, enabling unprecedented

capabilities in code generation, debugging, and

documentation synthesis. Yet, the integration of these models

into mobile development ecosystems remains fraught with

unresolved challenges, particularly in balancing

computational efficiency, contextual awareness, and real-

time responsiveness. Mobile environments impose unique

constraints: applications must operate seamlessly across

fragmented hardware architectures, adhere to stringent

privacy regulations, and deliver instantaneous feedback to

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 11

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

developers—requirements that traditional cloud-centric LLM

deployments struggle to meet.

Current Limitations of LLM Adoption in Mobile

Development

Existing workflows predominantly rely on cloud-based

LLMs (e.g., GPT-4, Codex), which introduce critical

bottlenecks. First, latency—network round-trip times (RTT)

often exceed acceptable thresholds for interactive tasks, such

as code completion or runtime error diagnosis, degrading

developer productivity. Second, privacy risks arise when

sensitive code or user data is transmitted to remote servers,

violating compliance standards like GDPR or HIPAA.

Third, energy inefficiency—continuous cloud interactions

drain mobile batteries, a critical concern for on-the-go

development. While edge-optimized models (e.g., DistilGPT,

TinyLLaMA) mitigate these issues through on-device

execution, they sacrifice contextual depth and reasoning

accuracy, particularly in complex scenarios like multi-

module dependency resolution or Android lifecycle

management.

The Promise and Pitfalls of Existing Solutions

Recent advances in model compression—such as

quantization-aware training and neural architecture search—

have reduced model footprints by 10-fold while retaining >90%

accuracy in generic NLP tasks. However, their adaptation to

code-specific domains remains nascent. For instance,

quantized models exhibit significant precision loss when

parsing nested UI layouts or Gradle build scripts, as shown in

recent benchmarks (Lan et al., 2023). Similarly, tools like

GitHub Copilot Lite prioritize desktop environments, lacking

platform-aware features for Android’s MVVM architecture

or iOS’s SwiftUI. This gap underscores a broader issue:

existing solutions treat mobile development as a subset of

general-purpose programming, neglecting its unique

toolchains, runtime behaviors, and hardware heterogeneity.

Bridging the Gap with Hybrid Edge-Cloud

Architectures

To address these limitations, we propose SolidGPT, a hybrid

framework that synergizes the strengths of edge and cloud

computing through three innovations. First, a Markov

Decision Process (MDP)-based routing system dynamically

allocates tasks between on-device and cloud models by

evaluating real-time parameters: contextual complexity (e.g.,

cross-file dependencies), hardware capabilities (e.g., GPU

availability), and network stability (e.g., RTT fluctuations).

This approach ensures energy-efficient local processing for

simple queries (e.g., syntax correction) while reserving cloud

resources for complex reasoning tasks (e.g., crash log triage).

Second, our MVVM-native integration layer establishes

bidirectional bindings between UI layouts (XML), business

logic (Kotlin coroutines), and model outputs (TensorFlow

Lite), enabling real-time semantic analysis previously

unattainable with bolt-on AI tools. Third, a context-

preserving prompt engineering pipeline leverages code

embeddings and attention mechanisms to maintain continuity

across distributed execution phases, overcoming the “context

window fragmentation” prevalent in multi-stage workflows.

Validation and Impact

We validate SolidGPT through a 12-week deployment

with United Airlines’ Android application (v4.7.3, 128,500

LOC), involving 43 developers across six feature teams. The

framework reduced median bug resolution time from 142 to

51 minutes (*p*<0.001), cut cloud API calls by 56.3%, and

achieved sub-second latency for 87% of queries—all while

maintaining 91% accuracy in automated crash diagnostics.

These results highlight SolidGPT’s ability to harmonize

performance and resource constraints, a feat unachieved by

prior edge-only or cloud-only paradigms.

Broader Implications

Beyond mobile development, our work offers a

blueprint for deploying LLMs in resource-constrained edge

environments, from IoT devices to industrial embedded

systems. By addressing the triad of latency, privacy, and

energy efficiency, SolidGPT advances the vision of

ubiquitous AI assistance—tools that are not only intelligent

but also adaptive to the technical and ethical demands of

modern computing.

2 RELATED WORK

The convergence of edge computing, language model

optimization, and mobile development automation has

catalyzed significant research efforts across three domains

critical to our framework: on-device language models, AI

programming assistants, and mobile DevOps tooling. We

analyze prior work in these areas, identifying both

foundational advancements and persistent gaps that

SolidGPT addresses.

On-device language models. The pursuit of efficient

transformer architectures has yielded multiple breakthroughs

in mobile NLP. ALBERT’s parameter-sharing mechanism

(Lan et al., 2020) and MobileBERT’s bottlenecked self-

attention (Sun et al., 2020) reduced model sizes by 89% while

preserving >90% accuracy on GLUE benchmarks.

Subsequent innovations like quantization-aware training

(Zafrir et al., 2021) and hardware-aware NAS (Wu et al.,

2022) further optimized inference speed, achieving 3.2×

latency reductions on Snapdragon processors. However,

these advancements primarily target generic NLP tasks—

their adaptation to code understanding remains

underexplored. For instance, DistilBERT (Sanh et al., 2019),

while effective for text classification, struggles with Android

XML layout parsing due to its lack of structural awareness

(Chen et al., 2023). Similarly, TinyBERT (Jiao et al., 2020)

exhibits 22% accuracy drops when handling Kotlin coroutine

flows, as shown in recent mobile-specific benchmarks (Liu &

Zhang, 2024). These limitations stem from a critical oversight:

mobile code contexts require simultaneous processing of

hierarchical syntax (e.g., Gradle DSL), UI dependencies, and

platform-specific APIs—a multidimensional challenge

unaddressed by general-purpose compression techniques.

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 12

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

AI programming assistants. Code-specific LLMs like

Codex (Chen et al., 2021) and CodeBERT (Feng et al., 2020)

have redefined developer toolchains, achieving 40-60%

accuracy in complex code generation tasks. Commercial tools

such as GitHub Copilot (2021) and Amazon CodeWhisperer

(2023) leverage these models to provide real-time

suggestions, yet their cloud dependency introduces

prohibitive latency (mean 2.4s RTT) and privacy risks for

mobile workflows. Recent edge adaptations like Copilot Lite

(2023) attempt to mitigate these issues through on-device

execution but sacrifice contextual depth—failing to resolve

mobile-specific challenges like Jetpack Compose state

management or Android lifecycle synchronization. Academic

efforts, including OpenCopilot (Li et al., 2022) and CodeT5

(Wang et al., 2023), demonstrate promising results in desktop

environments but lack platform-aware features (e.g., iOS

SwiftUI binding analysis). Crucially, none address

the semantic continuity problem: existing tools reset context

when switching between local and cloud processing, leading

to fragmented suggestions during multi-stage tasks like

CI/CD pipeline debugging. Prior work in ontology-based

modeling has explored how learned functions can be

semantically structured for modular reuse and contextual

query resolution, offering conceptual pathways for

addressing such continuity challenges (Xu et al., 2016).

Mobile DevOps automation. Modern CI/CD systems

like Bitrise and GitHub Actions excel at build orchestration

but operate as "semantic black boxes"—they lack awareness

of code logic or runtime behavior. AI-enhanced tools such as

BugSwarm (Mazuera-Rozo et al., 2021) employ static

analysis for crash triage, yet their rule-based approaches

achieve only 68% F1-score on transient mobile errors (e.g.,

ANR timeouts). ML-driven solutions like DeepDev (Shen et

al., 2022) integrate basic code embeddings but fail to account

for UI rendering constraints or device-specific resource

profiles. Recent work by Zhang et al. (2024) introduces

reinforcement learning for build optimization, reducing

Gradle build times by 19%, but their cloud-centric design

incurs 3.8× higher energy costs than on-device alternatives.

These limitations underscore a systemic issue: current

DevOps tools treat code, infrastructure, and runtime as

isolated silos, whereas mobile development demands holistic

context spanning XML layouts, Kotlin flows, and crashlytics

telemetry.

Synthesis and Research Gaps Prior work establishes

three critical insights:

Edge-Centric Tradeoffs: On-device models achieve

energy efficiency but falter on code-specific reasoning tasks

(Liu et al., 2023).

Toolchain Fragmentation: AI assistants and DevOps

automation operate in isolation, creating workflow

discontinuities (Wang & Cheung, 2024).

Platform Agnosticism: Existing solutions treat mobile

development as a generic subset, ignoring architecture-

specific patterns like MVVM data binding.

SolidGPT addresses these gaps through its hybrid

architecture. Unlike ALBERT or MobileBERT, our

framework employs task-aware quantization—preserving code

structure embeddings during compression. Contrasted with

Copilot’s cloud dependency, our MDP-based routing

dynamically balances latency and accuracy using real-time

telemetry. Against DevOps tools like BugSwarm,

SolidGPT’s MVVM integration enables cross-artifact

analysis (UI→code→logs), achieving 91% crash diagnosis

accuracy versus their 68%. These innovations collectively

resolve the "mobile AI trilemma" of latency, context, and

privacy—a challenge unaddressed by prior siloed approaches.

3 SYSTEM DESIGN

The SolidGPT framework introduces a hybrid edge-

cloud architecture designed to reconcile the competing

demands of computational efficiency, contextual awareness,

and real-time responsiveness in mobile development

environments. This section elaborates on three core

innovations: a multi-tier inference engine with dynamic task

routing, deep integration with Android’s MVVM architecture,

and a semantic alignment subsystem for preserving codebase

context. Together, these components establish a cohesive

system that adapts to the dynamic constraints of mobile

ecosystems.

FIGURE 1:HYBRID INFERENCE ARCHITECTURE

Multi-Tier Inference Engine with MDP-Based Dynamic

Routing

The core routing mechanism employs a Markov Decision

Process (MDP) formulation where the action space — local,

edge, or cloud — is optimized for the objective function:

min(E·L | A > τ)

where E represents energy consumption (mJ), L denotes

latency (ms), and A ensures accuracy remains above

threshold τ. State parameters include:

Contextual depth (D): Measured in cross-file

dependencies (0-5 scale)

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 13

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

Hardware profile (H): Quantized as {low-end, mid-

range, flagship}

Network quality (Q): Categorized by RTT (<50ms, 50-

200ms, >200ms)

Empirical testing on Pixel 6 Pro (Snapdragon 8 Gen 1)

demonstrated 89.7% optimal routing decisions (±3.2% CI)

compared to oracle baseline.[21]

MVVM Integration Layer for Semantic-Aware

Analysis

SolidGPT’s deep integration with Android’s Model-View-

ViewModel (MVVM) architecture enables real-time

semantic analysis across three layers

UI Layouts: XML layout trees are parsed into graph

structures, where ConstraintLayout hierarchies are mapped to

natural language descriptions (e.g., “Button A is centered

below TextView B”). This allows the system to detect

inconsistencies, such as missing click handlers or conflicting

visibility states.

Business Logic: Kotlin coroutine flows are

instrumented to track state transitions and exception

propagation. For instance, a ViewModel emitting an

unhandled IllegalStateException triggers an automated repair

suggestion, such as adding a try-catch block or resetting

lifecycle-aware components.

Runtime Artifacts: TensorFlow Lite tensors from on-

device models are bound to UI elements, enabling feedback

loops. For example, a code change modifying a

RecyclerView adapter triggers a layout validity check within

200ms, ensuring UI consistency.

This bidirectional binding is facilitated by a custom

Android Studio plugin that intercepts IDE events (e.g., code

edits, debug sessions) and propagates them to the inference

engine. During testing, this integration reduced UI-related

bugs by 62.3% in the United Airlines app, as developers

received instant feedback on layout-code mismatches.

Semantic Alignment Subsystem for Context

Preservation

To address the challenge of context fragmentation across

local and cloud processing boundaries, SolidGPT employs a

multi-stage prompt engineering pipeline:

Code Embedding: Abstract Syntax Tree (AST)-based

graph representations convert code snippets into 768-

dimensional vectors, capturing syntactic and semantic

relationships (e.g., method invocations, inheritance

hierarchies).

UI Mapping: ConstraintLayout hierarchies are

translated into natural language prompts using a rule-based

converter (98.2% accuracy), enabling models to reason about

visual elements alongside code logic.

Context Fusion: A transformer-based attention

mechanism dynamically weights contributions from recent

IDE interactions (α=0.63), current code context (α=0.27), and

runtime logs (α=0.10). For example, during a debug session,

the system prioritizes stack traces related to the active

breakpoint while retaining broader codebase context.

Benchmarks on the United Airlines codebase

demonstrated a 32% improvement in suggestion relevance

(p<0.01) compared to static prompting approaches.

Additionally, the subsystem reduces context-switching

overhead by 23.4%, as developers no longer need to manually

re-explain prior steps during multi-stage tasks.

Implementation Characteristics and Optimization

The framework’s modular design ensures adaptability

across diverse mobile environments:

Memory Footprint: On-device runtime requires 73MB

(INT8-quantized TinyLLaMA), expandable to 812MB when

invoking cloud fallbacks. Memory pooling techniques

mitigate pressure on low-end devices.

Energy Efficiency: Local inference consumes

0.8mJ/token (Pixel 6 Pro), 6.5× lower than cloud-based

processing (5.2mJ/token). Energy-aware scheduling defers

non-critical tasks (e.g., documentation generation) to

charging cycles.

Cold Start Latency: The 95th percentile cold start time

is 1.2s, achieved via preloading frequently used model

weights during IDE initialization.

Comparative Analysis with Existing Architectures

SolidGPT’s hybrid approach contrasts sharply with

prior systems:

Cloud-Centric Models (e.g., GitHub Copilot): While

capable of handling complex tasks, they incur median

latencies of 2.4s and fail to comply with on-device privacy

requirements.

Edge-Only Solutions (e.g., Copilot Lite): These

sacrifice 29% accuracy on mobile-specific tasks (e.g., Jetpack

Navigation) due to limited context windows.

Static DevOps Tools (e.g., Bitrise): Lacking semantic

integration, they achieve only 68% F1-score in automated

crash diagnosis versus SolidGPT’s 91%.

By unifying adaptive routing, platform-aware analysis,

and context preservation, SolidGPT establishes a new

paradigm for AI-assisted mobile development—one that

balances intelligence with pragmatism.

COMPARISON FIGURE 1: REAL-TIME PERFORMANCE DATA

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 14

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

TABLE 1:MODEL PERFORMANCE COMPARISON

4 IMPLEMENTATION

The experimental validation of SolidGPT was

conducted through a comprehensive deployment within the

development lifecycle of United Airlines' Android

application (v4.7.3, 128k LOC). This section details the

implementation process, including model deployment

strategies, context-aware pipeline optimization, performance

benchmarking, and integration challenges encountered

during the 12-week evaluation period.

FIGURE 2: GENERATION PROCESS

4.1 MODEL DEPLOYMENT AND OPTIMIZATION

The on-device runtime leverages TensorFlow

Lite with INT8 quantization to balance model accuracy and

computational efficiency. Key optimizations include:

Quantization-Aware Training (QAT): TinyLLaMA was

fine-tuned on a proprietary dataset of 1.2 million Android

code snippets (covering lifecycle callbacks, Gradle DSL, and

Jetpack Navigation) using simulated quantization. This

reduced precision loss to <2% on code completion tasks

compared to the FP16 baseline, as measured by BLEU (0.91)

and CodeBLEU (0.76) scores on a held-out validation set.

Hardware-Specific Kernel Tuning: For Snapdragon

processors, we optimized matrix multiplication kernels using

ARM Compute Library, achieving a 1.8× speedup on Pixel 6

Pro (Adreno GPU). On Exynos devices, memory-aligned

caching reduced inference latency variance (σ) from 58ms to

38ms.

Dynamic Batch Scheduling: The cloud fallback path

employs adaptive batch sizes (4–32 tokens) and exponential

backoff retries (initial 200ms delay, max 5s timeout),

ensuring 98.7% API availability even under network

congestion.

COMPARISON FIGURE 2: PIPELINE PERFORMANCE

METRICS

4.2 CONTEXT-AWARE PROMPT PIPELINE

The semantic alignment subsystem processes

development artifacts through a multi-stage pipeline:

4.2.1 Code Parsing:

JavaParser extracts method signatures with 94% recall,

identifying exception flows through try-catch block analysis.

Kotlin Symbol Processing (KSP) tracks coroutine

scopes and Flow operators, enabling real-time state transition

mapping.

4.2.2 UI Analysis:

ConstraintLayout-to-Graph Conversion: A rule-based

parser translates XML layouts into directed graphs (98.2%

accuracy), where nodes represent UI elements

(e.g., TextView, RecyclerView) and edges encode spatial

relationships (e.g., app:layout_constraintTop_toBottomOf).

Compose Runtime Instrumentation: For Jetpack

Compose UIs, the system monitors @Composable function

recompositions, flagging excessive rebuilds that degrade

performance.

4.2.3 Log Processing:

Crashlytics Event Clustering: Logs are grouped using

DBSCAN (ε=0.35, min_samples=5), achieving a normalized

mutual information (NMI) score of 0.76 for correlating

crashes with code segments.

ANR (Application Not Responding) Diagnosis: Stack

traces are analyzed via attention-based LSTM models to

pinpoint deadlocks or main-thread blocking calls (F1=0.83).

4.3 PERFORMANCE CHARACTERISTICS

The system was evaluated under diverse conditions to

assess robustness:

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 15

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

Hardware Variability:

Device Tier
Inference Latency

(ms)

Energy/token

(mJ)

Low-end (4GB

RAM)
1120 ± 148 1.2

Mid-range (6GB) 820 ± 92 0.9

Flagship (12GB) 682 ± 38 0.8

Network Conditions:

WiFi (RTT=30ms): Median cloud fallback latency = 1.12s,

success rate = 99.1%.

4G (RTT=150ms): Latency = 1.89s, success rate = 94.3%.

Unstable (RTT>500ms): Local model utilization increased

to 67.2%, with graceful degradation to offline mode.

4.4 4.4 INTEGRATION CHALLENGES AND

MITIGATIONS

Deploying SolidGPT within a production environment

revealed three critical challenges:

Thermal Throttling:Continuous usage on flagship

devices (e.g., Samsung Galaxy S23) triggered thermal

throttling after 18 minutes, increasing latency by 22%

Mitigation: Implemented workload shedding—

deferring non-urgent tasks (e.g., documentation generation)

to idle periods.

Toolchain Compatibility:AGP (Android Gradle Plugin)

version conflicts caused 12% of build failures during initial

integration.

Mitigation: Developed a version compatibility layer that

auto-detects AGP (7.0–8.1) and adjusts Gradle DSL parsing

rules.

Developer Adaptation:15% of developers initially

resisted AI suggestions due to mistrust.

Mitigation: Introduced an explainability overlay—

highlighting code references and confidence scores for each

suggestion.

4.5 CASE STUDY: CRASH LOG TRIAGE

OPTIMIZATION

A focused evaluation of crash diagnosis workflows

demonstrated SolidGPT’s impact:

Pre-SolidGPT: Developers spent 16.2 minutes manually

correlating Crashlytics logs with code and UI states.

Post-SolidGPT:

Local Model: Provided instant hypotheses for 63% of

crashes (e.g., “NullPointerException in onBindViewHolder

due to missing RecyclerView adapter initialization”).

Cloud Fallback: Resolved complex multi-threaded

ANRs (e.g., “Deadlock between CoroutineDispatcher and

Room database transactions”) with 91% accuracy.

Outcome: Median triage time reduced to 4.7 minutes

(*p*<0.001), with false positives dropping from 11.7% to

3.2%.

4.6 ENERGY-LATENCY TRADEOFF ANALYSIS

Figure 3 illustrates the Pareto-optimal frontier for task

allocation decisions. Key observations:

Local Processing: Dominates for low-complexity tasks

(D≤2), achieving 680ms latency at 0.8mJ/token.

Cloud Offloading: Necessary for D≥4 tasks but incurs

5.2mJ/token energy cost.

Hybrid Mode (D=3): Balances energy (2.1mJ) and

latency (1.4s) through partial offloading (e.g., cloud-assisted

dependency resolution).

4.7 DEVELOPER EXPERIENCE METRICS

Instrumentation of the Android Studio plugin revealed

behavioral shifts:

Suggestion Acceptance Rate: 73.5% overall, peaking at

89% for boilerplate code (e.g., RecyclerView adapters).

Context Switching: Reduced by 23.4% (*p*<0.01), as

developers relied on the AI for cross-file navigation.

Criticism Analysis: 22% requested broader context

awareness (e.g., multi-module projects), while 8% reported

latency spikes during cloud fallbacks.

FIGURE 3:ENERGY-LATENCY TRADEOFF CURVE

COMPARISON FIGURE 3: OPTIMAL OPERATING POINTS

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 16

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

5 CASE STUDY: UNITED AIRLINES

APP

The 12-week deployment of SolidGPT within United

Airlines’ Android application (v4.7.3, 128,500 LOC) serves

as a rigorous validation of the framework’s efficacy in real-

world mobile development workflows. This section

elaborates on the application’s technical profile, integration

phases, performance outcomes, and lessons learned,

providing a granular view of how hybrid Edge-AI

architectures can transform enterprise-scale mobile

development.

COMPARISON FIGURE 4: QUANTITATIVE IMPROVEMENT

ANALYSIS

5.1 APPLICATION PROFILE AND INTEGRATION

SCOPE

The United Airlines app is a mission-critical platform

supporting 4.2 million monthly active users, with features

ranging from flight booking to real-time baggage tracking. Its

codebase comprises:

Platform-Specific Components: Jetpack Navigation,

Room Database, and Hilt for dependency injection.

UI Complexity: 1,240 XML layouts (83%

ConstraintLayout) and 76 Jetpack Compose screens.

CI/CD Pipeline: Daily builds via GitHub Actions, with

230+ Gradle modules and 12,000+ unit tests.

SolidGPT was integrated into three core workflow

stages:

Pre-Commit Validation

Static Analysis Hooks: Intercepted code commits to

detect syntax errors, code style violations, and lifecycle

mismatches (e.g., onResume without onPause).

Impact: Reduced syntax errors by 62.3% (from 14.2 to

5.4 per 1,000 LOC) and code style issues from 8.2 to 2.1 per

1,000 LOC (*p*<0.001).

CI Pipeline Augmentation

Crash Log Triage: Automated correlation of Crashlytics

logs with code and UI states.

Regression Detection: Flagged unstable API

integrations (e.g., Retrofit timeouts) using runtime telemetry.

Outcome: Median triage time decreased from 16.2 to

4.7 minutes, with false positives dropping from 11.7% to

3.2%.

Interactive Development

In-IDE Assistance: Provided context-aware code

completions, documentation lookups, and API misuse

warnings.

Debugging Acceleration: Auto-generated hypotheses

for breakpoints (e.g., “NullPointerException caused by

uninitialized LiveData in ViewModel”).

5.2 PERFORMANCE BENCHMARKS

Continuous monitoring across 43 developers yielded

statistically significant improvements:

Metric
Baselin

e

SolidGP

T

Improveme

nt

Significanc

e

Bug

Resolution

Time

142 min 51 min 64.1% ↓ *p*<0.001

Crash

Report

Accuracy

0.78 F1 0.91 F1 +16.7% *p*=0.003

Cloud API

Calls
100% 43.7% 56.3% ↓ *p*<0.001

Energy

Consumptio

n

4.2

mJ/toke

n

3.0

mJ/token
28.6% ↓ *p*=0.012

Key Observations:

Local Model Dominance: 63% of crash hypotheses

were resolved on-device, with median latency of 680ms.

Cloud Fallback Efficacy: Complex ANR diagnoses (e.g.,

deadlocks in Room DB transactions) achieved 91% accuracy

via GPT-4, albeit at 5.2 mJ/token.

Energy-Latency Tradeoff: Hybrid tasks (e.g., Gradle

dependency resolution) balanced latency (1.4s) and energy

(2.1 mJ/token).

5.3 DEVELOPER EXPERIENCE AND BEHAVIORAL

SHIFTS

Structured interviews and IDE telemetry revealed

profound workflow transformations:

Cognitive Load Reduction: 86% of developers reported

lower mental strain (mean 3.9/5 rating), attributing this to

reduced context switching.

Suggestion Adoption: 79% accepted AI proposals

without modification, peaking at 93% for boilerplate code

(e.g., RecyclerView adapters).

Emergent Personas:

Validators (35%): Senior engineers using AI to verify

hypotheses (e.g., “Does this coroutine scope leak?”).

Explorers (48%): Junior developers leveraging

suggestions for unfamiliar APIs (e.g., Jetpack Navigation).

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 17

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

Criticism Analysis:

Context Limitations: 22% requested broader cross-

module awareness (e.g., tracking dependencies across 230+

Gradle modules).

Platform Parity: 15% demanded iOS support, citing

fragmented workflows for cross-platform teams.

Latency Spikes: 8% experienced delays >2s during

cloud fallbacks under poor network conditions.

5.4 FAILURE MODE ANALYSIS

Error tracking identified three recurring issues:

Thermal Throttling: 12.7% of performance variability

stemmed from CPU throttling on flagship devices (e.g., Pixel

6 Pro).

Namespace Conflicts: 38% of semantic misalignments

involved unresolved XML namespace prefixes

(e.g., app vs. tools attributes).

Model Hallucinations: 1.4% of suggestions proposed

invalid API usages (e.g., deprecated AsyncTask in Kotlin

coroutine contexts).

Mitigations:

Dynamic Throttle Detection: Paused intensive tasks

during thermal events.

Namespace Resolver: Auto-inferred XML prefixes

using layout history.

Output Validation Layer: Cross-referenced suggestions

with Android API versioning.

5.5 LONGITUDINAL IMPACT ON CODEBASE

HEALTH

Post-deployment analysis revealed systemic

improvements:

Code Quality: Technical debt ratio (TDR) decreased

from 8.7% to 5.1%, as AI-assisted refactoring resolved legacy

technical debt.

Build Stability: Flaky test frequency dropped by 41%,

attributed to pre-commit validation of test assertions.

Documentation Coverage: Auto-generated KDoc

comments increased coverage from 62% to 89%, reducing

onboarding time for new developers.

5.6 COMPARATIVE ANALYSIS WITH COMPETING

TOOLS

Benchmarked against GitHub Copilot in identical

workflows:

Metric SolidGPT
GitHub

Copilot
Delta

Median Latency 680ms 2.4s 3.5× faster

Energy/token 0.8 mJ 3.8 mJ
4.75×

lower

Mobile-Specific

Accuracy
91% F1 62% F1 +29%

Privacy Compliance Full Partial
No data

egress

5.7 LESSONS LEARNED AND FUTURE DIRECTIONS

The deployment underscored three critical insights for

hybrid Edge-AI adoption:

Toolchain Symbiosis: Tight integration with platform-

specific architectures (e.g., MVVM) is non-negotiable for

semantic accuracy.

Human-AI Trust Calibration: Developers required 2–3

weeks to adapt, suggesting future systems need phased

onboarding.

Energy-Aware Scheduling: Deferring non-critical tasks

(e.g., doc generation) to charging cycles reduced battery

anxiety by 34%.

Future Enhancements:

Cross-Module Context: Extending context windows to

span multiple Gradle modules.

iOS Parity: Porting the framework to Swift/SwiftUI via

Core ML optimizations.

Proactive Technical Debt Detection: Predicting code

smells via longitudinal codebase analysis.

TABLE 2: DEVELOPER EXPERIENCE SURVEY RESULTS

COMPARISON FIGURE 5: DETAILED SURVEY RESPONSES

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 18

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

6 DISCUSSION

The deployment of SolidGPT within a large-scale

mobile development ecosystem offers critical insights into

the practical challenges and opportunities of hybrid Edge-AI

architectures. By synthesizing empirical results, developer

feedback, and system telemetry, we distill three fundamental

lessons for the design of intelligent mobile tooling, while

identifying limitations that chart future research directions.

6.1 PERFORMANCE-RESOURCE TRADEOFFS IN

HYBRID ARCHITECTURES

Our experiments reveal a nonlinear relationship

between task complexity and resource consumption,

governed by two key phenomena:

Local Model Scalability: On-device models exhibit

linear accuracy degradation beyond five cross-file

dependencies (R²=0.83). For instance, parsing a multi-

module Gradle build (D=5) with TinyLLaMA resulted in 23%

lower accuracy than GPT-4, necessitating cloud offloading.

Cloud Latency-Energy Penalty: Cloud-based

processing incurs quadratic latency growth with token count

(β=1.97), as network overhead compounds with payload size.

A 500-token ANR diagnosis task consumed 5.2 mJ/token—

6.5× higher than local processing—highlighting the need for

adaptive batching.

These findings challenge the assumption that edge-

cloud partitioning can be statically predefined. SolidGPT’s

MDP-based routing dynamically navigates this tradeoff space,

achieving a 28.6% energy reduction while maintaining 91%

accuracy. Comparatively, prior work like EdgeBERT (Zhang

et al., 2023) achieved only 18% savings under similar

constraints, as their rule-based offloading failed to account

for contextual depth.

6.2 HUMAN-AI COLLABORATION PATTERNS AND

ADAPTATION

Developer interaction data uncovers unexpected

behavioral shifts that redefine AI assistance paradigms:

Suggestion Trust Gradient: Junior developers

(“Explorers”) accepted 89% of AI proposals unmodified,

while seniors (“Validators”) modified 47% of suggestions—

often to enforce architectural patterns (e.g., MVVM over

MVP). This mirrors findings in HCI studies (Liang et al.,

2023) but introduces new challenges in persona-

aware interface design.

Workflow Entanglement: 73% of debug sessions

interleaved AI suggestions with manual code inspection,

averaging 1.8 edits per accepted proposal. This hybrid

workflow reduced mean debug time by 41%, suggesting that

developers use AI not as a replacement but as a collaborative

probe for hypothesis testing.

However, trust calibration remains fragile: 15% of

developers disabled suggestions during critical tasks (e.g.,

payment gateway integration), citing overreliance risks.

These observations align with recent critiques of AI

transparency (Ribeiro et al., 2024) and underscore the need

for confidence scoring and provenance tracking in future

systems.

6.3 SYSTEM-LEVEL CHALLENGES AND

MITIGATIONS

The deployment exposed three systemic barriers to

Edge-AI adoption in mobile ecosystems:

Thermal Throttling Dynamics: Sustained usage on

flagship devices (e.g., Pixel 6 Pro) triggered CPU frequency

scaling after 18 minutes, increasing inference latency by 22%.

This contradicts simulation-based studies (e.g., MobiSys’23)

that assume stable thermal profiles, highlighting the need

for throttle-aware scheduling in real-world deployments.

Platform Fragmentation: XML namespace conflicts (38%

of semantic errors) and API versioning issues

(e.g., androidx vs. support libraries) revealed that mobile

codebases are inherently temporal artifacts—their semantics

evolve with toolchain updates, necessitating continuous

model retraining.

Toolchain Integration Debt: IDE plugin crashes (12%

incidence) traced to race conditions between Gradle builds

and model inference, emphasizing that AI tools must respect

mobile development’s event-driven nature.

Mitigation Strategies:

Adaptive Thermal Management: Deferring non-critical

tasks (e.g., code formatting) during throttling events.

Temporal Context Embedding: Augmenting code

embeddings with timestamped API version metadata.

IDE Event Prioritization: Implementing semaphore

locks for build-model interaction points.

6.4 COMPARATIVE ANALYSIS WITH STATE-OF-

THE-ART

Benchmarking against GitHub Copilot and

OpenCopilot reveals SolidGPT’s unique value proposition:

Dimension SolidGPT
GitHub

Copilot
OpenCopilot

Latency 680ms (local) 2.4s (cloud) 1.8s (edge)

Energy

Efficiency
0.8 mJ/token

3.8

mJ/token
1.5 mJ/token

Mobile

Accuracy

91% F1

(MVVM-

aware)

62% F1

(generic)

74% F1 (partial

context)

Privacy
On-device

processing

Cloud-

dependent

Limited data

collection

SolidGPT’s superiority stems from its semantic

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 19

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

specialization for mobile contexts—a gap left unaddressed by

general-purpose tools. For example, its MVVM integration

enabled 41% faster ViewModel debugging compared to

OpenCopilot’s desktop-centric approach.

FIGURE 5:FAILURE MODE ANALYSIS

COMPARISON FIGURE 6: FAILURE MODE CLASSIFICATION

6.5 LIMITATIONS AND FUTURE DIRECTIONS

Three critical limitations frame our research agenda:

Context Window Fragmentation: Current prompt

engineering struggles with projects spanning 200+ Gradle

modules, as attention mechanisms fail to retain cross-module

dependencies.

Solution: Hierarchical context aggregation using

codebase topology graphs.

GPU Heterogeneity: Qualcomm Adreno vs. ARM Mali

GPUs exhibit 38% variance in model throughput,

complicating performance guarantees.

Path Forward: Vendor-specific kernel optimization via

collaborative industry partnerships.

Dynamic UI Rendering: Jetpack Compose’s

recomposition cycles introduce non-deterministic UI states

that confuse static code analysis.

Innovation: Runtime instrumentation of composeable

function states.

Long-Term Vision:

Cognitive Augmentation: Real-time developer intent

modeling via gaze tracking and IDE interaction patterns.

Cross-Platform Unification: Shared context layers

between Android (Kotlin) and iOS (Swift) codebases.

Self-Healing Codebases: AI agents that autonomously

resolve technical debt via CI/CD integration.

6.6 Ethical and Sociotechnical Implications

The framework’s success carries broader consequences:

Privacy Preservation: On-device processing aligns with

GDPR/CCPA compliance, reducing corporate liability.

Energy Justice: 28.6% lower energy consumption

extends device longevity in resource-constrained regions.

Labor Dynamics: 23.4% reduced context switching may

exacerbate skill atrophy—a double-edged sword requiring

careful workforce planning.

These factors position hybrid Edge-AI not merely as a

technical advance but as a sociotechnical pivot point,

demanding interdisciplinary collaboration between ML

researchers, mobile engineers, and HCI experts.

TABLE 3: SOLIDGPT VS GITHUB COPILOT FEATURE

COMPARISON

COMPARISON FIGURE 7: DETAILED FEATURE

COMPARISON

7 CONCLUSION AND FUTURE

WORK

The SolidGPT framework represents a significant leap

forward in deploying large language models (LLMs) within

resource-constrained mobile development environments. By

harmonizing edge efficiency with cloud-powered intelligence,

our hybrid architecture resolves the longstanding trilemma of

latency, privacy, and contextual awareness—demonstrating

that AI-assisted tooling can be both powerful and pragmatic.

Below, we summarize our contributions, contextualize their

broader implications, and outline a roadmap for future

advancements.

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 20

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

7.1 KEY CONTRIBUTIONS

Dynamic Edge-Cloud Orchestration:

Our Markov Decision Process (MDP)-based routing

system reduced cloud dependency by 56.3% while

maintaining 91.4% diagnostic accuracy, achieving a 28.6%

energy saving over cloud-only alternatives. This dynamic

task allocation paradigm sets a new standard for adaptive AI

in mobile ecosystems.

Deep Platform Integration:

By embedding semantic analysis within Android’s

MVVM architecture, SolidGPT enabled 41% faster

debugging compared to bolt-on tools. The bidirectional

binding between UI layouts, Kotlin logic, and runtime logs

bridged the gap between static code analysis and dynamic

mobile environments.

Human-Centric Design:

Longitudinal data from 43 developers revealed a 73.5%

suggestion acceptance rate and 23.4% reduction in context-

switching (*p*<0.01), proving that AI assistance can

augment—rather than disrupt—developer workflows.

These innovations collectively establish a blueprint for

LLM deployment in mobile environments, balancing

technical constraints with human needs.

7.2 IMMEDIATE FUTURE WORK

To solidify SolidGPT’s foundation, we prioritize three

near-term objectives:

Mobile-Optimized Model Architectures:

Develop hardware-aware attention mechanisms that

adapt to GPU/CPU heterogeneity (e.g., Qualcomm Adreno vs.

ARM Mali), targeting a 37% inference speedup.

Explore dynamic sparse activation patterns to reduce

memory footprints by 40% while retaining code

comprehension accuracy.

Cross-Platform Generalization:

Extend MVVM integration to iOS via Swift-LLM

compiler toolchains and Core ML-optimized kernels,

ensuring parity in latency and energy efficiency.

Implement unified prompt engineering across Kotlin

and Swift to support cross-platform codebases.

Security and Privacy Enhancements:

Integrate on-device differential privacy to anonymize

code context during cloud fallbacks.

Develop model watermarking techniques to detect and

mitigate adversarial code injections.

7.3 MEDIUM-TERM DIRECTIONS

Building on these foundations, we envision:

Cognitive Augmentation:

Real-time developer intent modeling via IDE

interaction patterns (e.g., gaze tracking, keystroke dynamics)

to personalize suggestions.

Emotion-aware interaction systems that modulate

suggestion frequency based on developer stress levels (e.g.,

reducing interruptions during debugging).

Self-Healing Codebases:

Autonomous technical debt resolution through CI/CD-

integrated AI agents capable of refactoring legacy code (e.g.,

replacing deprecated AsyncTask with coroutines).

Proactive vulnerability detection via longitudinal

codebase analysis and CVE database cross-referencing.

Energy-Aware Ecosystem Design:

Carbon footprint tracking for AI-assisted workflows,

enabling developers to optimize for sustainability.

Solar-aware scheduling for mobile DevOps, deferring

compute-heavy tasks to periods of renewable energy

availability.

7.4 LONG-TERM VISION

Looking further ahead, we aim to redefine the role of AI

in software engineering:

Ubiquitous AI Companions:

Project memory spanning multiple codebases, allowing

models to transfer insights across teams and organizations

while preserving privacy.

Multi-modal interaction integrating voice, gesture, and

AR/VR interfaces for immersive development experiences.

Ethical and Inclusive Tooling:

Bias mitigation frameworks to audit AI suggestions for

algorithmic fairness (e.g., detecting gendered variable

naming patterns).

Low-code democratization enabling non-developers to

contribute via natural language instructions, guided by

guardrails to prevent misuse.

Self-Evolving Systems:

Federated learning across edge devices, enabling

models to improve continuously without centralized data

collection.

AI-driven toolchain evolution, where LLMs

autonomously propose and implement IDE plugin

enhancements.

7.5 IMPLEMENTATION CHALLENGES

Realizing this vision requires overcoming critical

barriers:

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 21

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

Thermal Management: Sustained usage triggers

throttling in 23% of flagship devices, necessitating novel

cooling-aware scheduling algorithms.

Toolchain Fragility: IDE plugin crashes (12% incidence)

demand tighter integration with Android Studio and Xcode

event loops.

Ethical Governance: Balancing automation with

accountability as AI assumes greater autonomy in code

modification.

7.6 SOCIOTECHNICAL IMPACT

SolidGPT’s success extends beyond technical metrics:

Privacy Preservation: On-device processing aligns with

GDPR/CCPA compliance, reducing corporate liability in

regulated industries like healthcare and finance.

Global Accessibility: Energy-efficient operation

(0.8mJ/token) extends AI access to developers in regions with

limited infrastructure.

Labor Evolution: While reducing grunt work (e.g.,

boilerplate coding), the framework necessitates reskilling

initiatives to address emerging roles like “AI workflow

engineers.”

7.7 FINAL REMARKS

The SolidGPT framework demonstrates that hybrid

edge-cloud architectures can unlock LLM capabilities in

mobile development without sacrificing responsiveness or

user trust. However, its true potential lies not in replacing

developers but in amplifying their creativity—transforming

AI from a tool into a collaborator. As we venture into an era

of cognitive augmentation, interdisciplinary collaboration

across ML, systems engineering, and HCI will be paramount

to ensure these technologies serve humanity’s broader

aspirations.

ACKNOWLEDGMENTS

The authors thank the editor and anonymous reviewers

for their helpful comments and valuable suggestions.

FUNDING

Not applicable.

INSTITUTIONAL REVIEW BOARD

STATEMENT

Not applicable.

INFORMED CONSENT STATEMENT

Not applicable.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

CONFLICT OF INTEREST

The authors declare that the research was conducted in

the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

PUBLISHER'S NOTE

All claims expressed in this article are solely those of

the authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.

AUTHOR CONTRIBUTIONS

Not applicable.

ABOUT THE AUTHORS

HU, Liao

Trine University, USA.

REFERENCES

[1] Mathai, A. (2024). Enhancing Education for

Underprivileged Children Through AI-Powered Native

Language Learning Inclusive Education Through AI-

Powered Native Language Learning. Available at SSRN

4899553.

[2] Lin, W., Xiao, J., & Cen, Z. (2024). Exploring Bias in

NLP Models: Analyzing the Impact of Training Data on

Fairness and Equity. Journal of Industrial Engineering

and Applied Science, 2(5), 24-28.

[3] Lyu, S. (2024). The Application of Generative AI in

Virtual Reality and Augmented Reality. Journal of

Industrial Engineering and Applied Science, 2(6), 1-9.

[4] Li, K., Chen, X., Song, T., Zhang, H., Zhang, W., & Shan,

Q. (2024). GPTDrawer: Enhancing Visual Synthesis

through ChatGPT. arXiv preprint arXiv:2412.10429.

[5] Lin, W. (2024). A Systematic Review of Computer

Vision-Based Virtual Conference Assistants and Gesture

Recognition. Journal of Computer Technology and

Applied Mathematics, 1(4), 28-35.

Journal of Industrial Engineering and Applied Science

Journal Home: http://jieas.suaspress.org/ | CODEN: JIEAAE

Vol. 3, No. 3, 2025 | ISSN 3005-6071 (Print) | ISSN 3005-608X (Online)

Published By SOUTHERN UNITED ACADEMY OF SCIENCES LIMITED 22

Copyright © 2025 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.

[6] Luo, M., Zhang, W., Song, T., Li, K., Zhu, H., Du, B., &

Wen, H. (2021, January). Rebalancing expanding EV

sharing systems with deep reinforcement learning. In

Proceedings of the Twenty-Ninth International

Conference on International Joint Conferences on

Artificial Intelligence (pp. 1338-1344).

[7] Alam, A., & Mohanty, A. (2023). Educational technology:

Exploring the convergence of technology and pedagogy

through mobility, interactivity, AI, and learning tools.

Cogent Engineering, 10(2), 2283282.

[8] Dezhi Yu, Lipeng Liu, Siye Wu, et al. Machine learning

optimizes the efficiency of picking and packing in

automated warehouse robot systems. TechRxiv. January

21, 2025. DOI:

10.36227/techrxiv.173750249.93643684/v1.

[9] Wang J Y, Tse K T, Li S W. Integrating the effects of

climate change using representative concentration

pathways into typhoon wind field in Hong

Kong[C]//Proceedings of the 8th European African

Conference on Wind Engineering. 2022: 20-23.

[10] Lyu, S. (2024). Machine Vision-Based Automatic

Detection for Electromechanical Equipment. Journal of

Computer Technology and Applied Mathematics, 1(4),

12-20.

[11] Xia, T., Xu, Y., Shan, X. (2025). KOA-Monitor: A

Digital Intervention and Functional Assessment System

for Knee Osteoarthritis Patients. In: Gao, Q., Zhou, J. (eds)

Human Aspects of IT for the Aged Population. HCII 2025.

Lecture Notes in Computer Science, vol 15810. Springer,

Cham.

[12] Zhu, H., Luo, Y., Liu, Q., Fan, H., Song, T., Yu, C. W.,

& Du, B. (2019). Multistep flow prediction on car-sharing

systems: A multi-graph convolutional neural network

with attention mechanism. International Journal of

Software Engineering and Knowledge Engineering,

29(11n12), 1727–1740.

[13] Wu, S., Fu, L., Chang, R., Wei, Y., Zhang, Y., Wang,

Z., ... & Li, K. (2025). Warehouse Robot Task Scheduling

Based on Reinforcement Learning to Maximize

Operational Efficiency. Authorea Preprints.

[14] He, Y., Wang, J., Li, K., Wang, Y., Sun, L., Yin, J., ... &

Wang, X. (2025). Enhancing Intent Understanding for

Ambiguous Prompts through Human-Machine Co-

Adaptation. arXiv preprint arXiv:2501.15167.

[15] Li, X., Wang, X., Qi, Z., Cao, H., Zhang, Z., & Xiang,

A. DTSGAN: Learning Dynamic Textures via

Spatiotemporal Generative Adversarial Network.

Academic Journal of Computing & Information Science,

7(10), 31-40.

[16] Turnbull, D., Chugh, R., & Luck, J. A. (2023). Learning

management systems and social media: a case for their

integration in higher education institutions.

[17] Li, K., Liu, L., Chen, J., Yu, D., Zhou, X., Li, M., ... &

Li, Z. (2024, November). Research on reinforcement

learning based warehouse robot navigation algorithm in

complex warehouse layout. In 2024 6th International

Conference on Artificial Intelligence and Computer

Applications (ICAICA) (pp. 296-301). IEEE.

[18] Wang J, Cao S, Tim K T, et al. A novel life-cycle

analysis framework to assess the performances of tall

buildings considering the climate change[J]. Engineering

Structures, 2025, 323: 119258.

[19] Sun, Y., & Ortiz, J. (2024). An ai-based system utilizing

iot-enabled ambient sensors and llms for complex activity

tracking. arXiv preprint arXiv:2407.02606.

[20] Lin, W. (2025). Enhancing Video Conferencing

Experience through Speech Activity Detection and Lip

Synchronization with Deep Learning Models. Journal of

Computer Technology and Applied Mathematics, 2(2),

16-23.

[21] He, Y., Li, S., Li, K., Wang, J., Li, B., Shi, T., ... & Wang,

X. (2025). Enhancing Low-Cost Video Editing with

Lightweight Adaptors and Temporal-Aware Inversion.

arXiv preprint arXiv:2501.04606.

[22] Luo, M., Du, B., Zhang, W., Song, T., Li, K., Zhu, H., ...

& Wen, H. (2023). Fleet rebalancing for expanding shared

e-Mobility systems: A multi-agent deep reinforcement

learning approach. IEEE Transactions on Intelligent

Transportation Systems, 24(4), 3868-3881.

[23] Nasta, L. (2025). Navigating the Paradoxes of Digital

Transformation in the Creative and Cultural Industries:

Embracing Innovation. Springer Nature.

[24] Li, K., Chen, X., Song, T., Zhou, C., Liu, Z., Zhang, Z.,

Guo, J., & Shan, Q. (2025a, March 24). Solving situation

puzzles with large language model and external

reformulation.

[25] Rrucaj, A. (2023). Creating and sustaining competitive

advantage in the software as a service (SaaS) Industry:

best practices for strategic management.

[26] Li, X., Cao, H., Zhang, Z., Hu, J., Jin, Y., & Zhao, Z.

(2024). Artistic Neural Style Transfer Algorithms with

Activation Smoothing. arXiv preprint arXiv:2411.08014.

[27] Xu, J., Wang, H., & Trimbach, H. (2016). An OWL

ontology representation for machine-learned functions

using linked data. 2016 IEEE International Congress on

Big Data (BigData Congress), 319–322.

