Cross-Market Arbitrage Strategies Based on Deep Learning

Authors

  • Ruibo Wu University of California
  • Tao Zhang Fudan University
  • Feng Xu Peking University

DOI:

https://doi.org/10.5281/zenodo.12747401

ARK:

https://n2t.net/ark:/40704/AJSM.v2n4a04

Keywords:

Cross-market Arbitrage, Deep Learning, LSTM, CNN, Reinforcement Learning, Data Quality, Risk Management, Financial Markets

Abstract

Cross-market arbitrage involves exploiting price differences of the same or similar financial instruments across different markets. The advent of deep learning (DL) has introduced new avenues for developing sophisticated arbitrage strategies. This paper explores how DL can be leveraged to enhance cross-market arbitrage strategies, focusing on the potential benefits, challenges, and practical applications. Through a comprehensive review of current literature and empirical case studies, we aim to provide insights into the integration of DL in arbitrage strategies, highlighting its impact on market efficiency and profitability. By examining DL techniques such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and reinforcement learning (RL), this study aims to demonstrate how these advanced methods can optimize arbitrage opportunities, manage risks, and improve overall trading performance in dynamic financial markets.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ruibo Wu, University of California

Master of quantitative finance, University of California, San Diego.

Tao Zhang, Fudan University

School of Economics, Fudan University, Shanghai.

Feng Xu, Peking University

Guanghua School of Management, Peking University, Beijing.

References

Aldridge, I. (2013). High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems. Wiley.

Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2018). Model compression and acceleration for deep neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 35(1), 126-136.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.

Feng, X., Heaton, J. B., & Polson, N. G. (2018). Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 34(1), 1-13.

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-669.

Gomber, P., Arndt, B., Lutat, M., & Uhle, T. (2018). High-Frequency Trading. In Handbook on Securities Trading and Derivatives (pp. 61-96). Edward Elgar Publishing.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Lhabitant, F.-S., & Gregoriou, G. N. (2008). Handbook of Hedge Funds. Wiley.

Sahoo, S. R., Chakraborty, S., & Mahapatra, A. (2018). Online incremental machine learning algorithm for time series prediction. Expert Systems with Applications, 102, 29-43.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929-1958.

Zhang, J., Aggarwal, C., & Qi, G. (2017). Stock price prediction through discovering multi-frequency trading patterns. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 2141-2149).

Zhao, J., Wang, W., & Sycara, K. (2019). Variational autoencoders for anomaly detection in HFT. IEEE Transactions on Computational Social Systems, 6(3), 543-553.

Xu, C., Qiao, Y., Zhou, Z., Ni, F., & Xiong, J. (2024a). Accelerating Semi-Asynchronous Federated Learning. arXiv Preprint arXiv:2402. 10991.

Zhou, J., Liang, Z., Fang, Y., & Zhou, Z. (2024). Exploring Public Response to ChatGPT with Sentiment Analysis and Knowledge Mapping. IEEE Access.

Zhou, Z., Xu, C., Qiao, Y., Xiong, J., & Yu, J. (2024). Enhancing Equipment Health Prediction with Enhanced SMOTE-KNN. Journal of Industrial Engineering and Applied Science, 2(2), 13–20.

Zhou, Z., Xu, C., Qiao, Y., Ni, F., & Xiong, J. (2024). An Analysis of the Application of Machine Learning in Network Security. Journal of Industrial Engineering and Applied Science, 2(2), 5–12.

Zhou, Z. (2024). ADVANCES IN ARTIFICIAL INTELLIGENCE-DRIVEN COMPUTER VISION: COMPARISON AND ANALYSIS OF SEVERAL VISUALIZATION TOOLS.

Xu, C., Qiao, Y., Zhou, Z., Ni, F., & Xiong, J. (2024b). Enhancing Convergence in Federated Learning: A Contribution-Aware Asynchronous Approach. Computer Life, 12(1), 1–4.

Guijarro-Ordonez, J., Pelger, M., & Zanotti, G. (2021). Deep Learning Statistical Arbitrage. Available at: CDAR Berkeley (CDAR) (IDEAS).

Sarkar, S. (2023). Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in High-Frequency Trading: A Comprehensive Exploration. Available at: Papers With Code (Papers with Code).

De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98(4), 703-738. doi:10.1086/261703.

Wang, L., Xiao, W., & Ye, S. (2019). Dynamic Multi-label Learning with Multiple New Labels. Image and Graphics: 10th International Conference, ICIG 2019, Beijing, China, August 23--25, 2019, Proceedings, Part III 10, 421–431. Springer.

Wang, L., Fang, W., & Du, Y. (2024). Load Balancing Strategies in Heterogeneous Environments. Journal of Computer Technology and Applied Mathematics, 1(2), 10–18.

Wang, L. (2024). Low-Latency, High-Throughput Load Balancing Algorithms. Journal of Computer Technology and Applied Mathematics, 1(2), 1–9.

Frenkel, J. A., & Levich, R. M. (1975). Covered interest arbitrage: Unexploited profits? Journal of Political Economy, 83(2), 325-338. doi:10.1086/260322.

Gagnon, L., & Karolyi, A. (2010). Multi-market trading and arbitrage. Journal of Financial Economics, 97(1), 53-80. doi:10.1016/j.jfineco.2010.03.009.

MacKinlay, A. C., & Ramaswamy, K. (1988). Index-futures arbitrage and the behavior of stock index futures prices. The Review of Financial Studies, 1(2), 137-158. doi:10.1093/rfs/1.2.137.

Shleifer, A., & Vishny, R. W. (1997). The limits of arbitrage. Journal of Finance, 52(1), 35-55. doi:10.1111/j.1540-6261.1997.tb03807.x.

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. *The Journal of Finance, 25*(2), 383-417. [doi:10.2307/2325486](https://doi.org/10.2307/2325486).

Hull, J. C. (2002). *Options, Futures and Other Derivatives* (5th ed.). Upper Saddle River, NJ: Pearson Education.

Roll, R., Schwartz, E., & Subrahmanyam, A. (2007). Liquidity and the law of one price: The case of the futures-cash basis. *Journal of Finance, 62*(5), 2201-2234. [doi:10.1111/j.1540-6261.2007.01272.x](https://doi.org/10.1111/j.1540-6261.2007.01272.x).

Malkiel, B. G. (2003). The efficient market hypothesis and its critics. *CEPS Working Paper, 91*. [doi:10.2139/ssrn.354380](https://doi.org/10.2139/ssrn.354380).

Harris, L. (2003). *Trading and Exchanges: Market Microstructure for Practitioners*. New York: Oxford University Press.

Downloads

Published

2024-07-18

How to Cite

Wu, R., Zhang, T., & Xu, F. (2024). Cross-Market Arbitrage Strategies Based on Deep Learning. Academic Journal of Sociology and Management, 2(4), 20–26. https://doi.org/10.5281/zenodo.12747401

Issue

Section

Articles

ARK