LSTM-Based Financial Statement Fraud Prediction Model for Listed Companies
DOI:
https://doi.org/10.5281/zenodo.13762976ARK:
https://n2t.net/ark:/40704/AJSM.v2n5a04References:
42Keywords:
Financial Statement Fraud, LSTM Networks, Deep Learning, Fraud DetectionAbstract
This research investigates the ability of Long Short-Term Memory (LSTM) networks to forecast financial statement fraud in publicly traded firms. Data was collected from S&P 500 companies for a decade, including 20,000 observations of company quarters. Using this data, we developed an LSTM model to identify trends in financial information across different periods.
Our model takes into account approximately 50 financial indicators, including indicators related to profitability and economic health. To avoid bias in our data, we employ a method known as Synthetic Minority Over-sampling (SMOTE). We also conduct time-series cross-validation to verify the effectiveness of our tests.
Results are promised. Our LSTM model outperforms traditional machine learning, achieving 95.6% accuracy, an F1 score of 0.879, and an AUC-ROC of 0.981. We see profitability, revenue performance, and revenue growth as key factors in fraud detection.
Interestingly, the model's performance remained steady over different periods. It also picked up on decreasing fraud cases in recent years. This research adds to the growing body of work on AI in financial analysis and offers valuable insights for developing fraud detection methods in auditing and management.
Our work shows how deep learning can uncover complex patterns of financial fraud. It lays the foundation for fraud detection and prevention in the future, potentially reshaping our approach to economic justice in the business world.
Downloads
Metrics
References
Ghosh, C., Das, N., Chowdhury, A., & Sadhukhan, B. (2023). Enhancing Financial Fraud Detection in Bitcoin Networks using Ensemble Deep Learning. In 2023 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS) (pp. 1-6).
P, A., Bharath, S., Rajendran, N., Devi, S. D., & Saravanakumar, S. (2023). Experimental Evaluation of Smart Credit Card Fraud Detection System using Intelligent Learning Scheme. In 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES) (pp. 1-6).
Shukla, P., Aggarwal, M., Jain, P., Khanna, P., & Rana, M. K. (2023). Financial Fraud Detection and Comparison Using Different Machine Learning Techniques. In 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 1205-1210).
Sivarethinamohan, R. (2023). Integration of Deep Learning and Particle Swarm Optimization for Enhanced Accounting Fraud Detection. In 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI) (pp. 1-7).
Sharma, R., Das, S., Ghosh, A., & Sadhukhan, B. (2024). Combatting Digital Financial Fraud through Strategic Deep Learning Approaches. In 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS) (pp. 824-828).
Li, S., Xu, H., Lu, T., Cao, G., & Zhang, X. (2024). Emerging Technologies in Finance: Revolutionizing Investment Strategies and Tax Management in the Digital Era. Management Journal for Advanced Research, 4(4), 35-49.
Shi J, Shang F, Zhou S, et al. Applications of Quantum Machine Learning in Large-Scale E-commerce Recommendation Systems: Enhancing Efficiency and Accuracy[J]. Journal of Industrial Engineering and Applied Science, 2024, 2(4): 90-103.
Wang, S., Zheng, H., Wen, X., & Fu, S. (2024). DISTRIBUTED HIGH-PERFORMANCE COMPUTING METHODS FOR ACCELERATING DEEP LEARNING TRAINING. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 108-126.
Zhang, M., Yuan, B., Li, H., & Xu, K. (2024). LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion. Journal of Artificial Intelligence General Science (JAIGS) ISSN: 3006-4023, 5(1), 295-326.
Lei, H., Wang, B., Shui, Z., Yang, P., & Liang, P. (2024). Automated Lane Change Behavior Prediction and Environmental Perception Based on SLAM Technology. arXiv preprint arXiv:2404.04492.
Wang, B., He, Y., Shui, Z., Xin, Q., & Lei, H. (2024). Predictive Optimization of DDoS Attack Mitigation in Distributed Systems using Machine Learning. Applied and Computational Engineering, 64, 95-100.
Wang, B., Zheng, H., Qian, K., Zhan, X., & Wang, J. (2024). Edge computing and AI-driven intelligent traffic monitoring and optimization. Applied and Computational Engineering, 77, 225-230.
Xu, Y., Liu, Y., Xu, H., & Tan, H. (2024). AI-Driven UX/UI Design: Empirical Research and Applications in FinTech. International Journal of Innovative Research in Computer Science & Technology, 12(4), 99-109.
Liu, Y., Xu, Y., & Song, R. (2024). Transforming User Experience (UX) through Artificial Intelligence (AI) in interactive media design. Engineering Science & Technology Journal, 5(7), 2273-2283.
Zhang, P. (2024). A STUDY ON THE LOCATION SELECTION OF LOGISTICS DISTRIBUTION CENTERS BASED ON E-COMMERCE. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 103-107.
Zhang, P., & Gan, L. I. U. (2024). Optimization of Vehicle Scheduling for Joint Distribution in the Logistics Park based on Priority. Journal of Industrial Engineering and Applied Science, 2(4), 116-121.
Li, H., Wang, S. X., Shang, F., Niu, K., & Song, R. (2024). Applications of Large Language Models in Cloud Computing: An Empirical Study Using Real-world Data. International Journal of Innovative Research in Computer Science & Technology, 12(4), 59-69.
Li, H., Wang, S. X., Shang, F., Niu, K., & Song, R. (2024). Applications of Large Language Models in Cloud Computing: An Empirical Study Using Real-world Data. International Journal of Innovative Research in Computer Science & Technology, 12(4), 59-69.
Ping, G., Wang, S. X., Zhao, F., Wang, Z., & Zhang, X. (2024). Blockchain-Based Reverse Logistics Data Tracking: An Innovative Approach to Enhance E-Waste Recycling Efficiency.
Xu, H., Niu, K., Lu, T., & Li, S. (2024). Leveraging artificial intelligence for enhanced risk management in financial services: Current applications and prospects. Engineering Science & Technology Journal, 5(8), 2402-2426.
Shi, Y., Shang, F., Xu, Z., & Zhou, S. (2024). Emotion-Driven Deep Learning Recommendation Systems: Mining Preferences from User Reviews and Predicting Scores. Journal of Artificial Intelligence and Development, 3(1), 40-46.
Wang, Shikai, Kangming Xu, and Zhipeng Ling. "Deep Learning-Based Chip Power Prediction and Optimization: An Intelligent EDA Approach." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 77-87.
Ping, G., Zhu, M., Ling, Z., & Niu, K. (2024). Research on Optimizing Logistics Transportation Routes Using AI Large Models. Applied Science and Engineering Journal for Advanced Research, 3(4), 14-27.
Shang, F., Shi, J., Shi, Y., & Zhou, S. (2024). Enhancing E-Commerce Recommendation Systems with Deep Learning-based Sentiment Analysis of User Reviews. International Journal of Engineering and Management Research, 14(4), 19-34.
Xu, H., Li, S., Niu, K., & Ping, G. (2024). Utilizing Deep Learning to Detect Fraud in Financial Transactions and Tax Reporting. Journal of Economic Theory and Business Management, 1(4), 61-71.
Zhan, X., Shi, C., Li, L., Xu, K., & Zheng, H. (2024). Aspect category sentiment analysis based on multiple attention mechanisms and pre-trained models. Applied and Computational Engineering, 71, 21-26.
Liu, B., Zhao, X., Hu, H., Lin, Q., & Huang, J. (2023). Detection of Esophageal Cancer Lesions Based on CBAM Faster R-CNN. Journal of Theory and Practice of Engineering Science, 3(12), 36-42.
Liu, B., Yu, L., Che, C., Lin, Q., Hu, H., & Zhao, X. (2024). Integration and performance analysis of artificial intelligence and computer vision based on deep learning algorithms. Applied and Computational Engineering, 64, 36-41.
Liu, B. (2023). Based on intelligent advertising recommendations and abnormal advertising monitoring systems in the field of machine learning. International Journal of Computer Science and Information Technology, 1(1), 17-23.
Wu, B., Xu, J., Zhang, Y., Liu, B., Gong, Y., & Huang, J. (2024). Integration of computer networks and artificial neural networks for an AI-based network operator. arXiv preprint arXiv:2407.01541.
Liang, P., Song, B., Zhan, X., Chen, Z., & Yuan, J. (2024). Automating the training and deployment of models in MLOps by integrating systems with machine learning. Applied and Computational Engineering, 67, 1-7.
Wu, B., Gong, Y., Zheng, H., Zhang, Y., Huang, J., & Xu, J. (2024). Enterprise cloud resource optimization and management based on cloud operations. Applied and Computational Engineering, 67, 8-14.
Xu, K., Zhou, H., Zheng, H., Zhu, M., & Xin, Q. (2024). Intelligent Classification and Personalized Recommendation of E-commerce Products Based on Machine Learning. arXiv preprint arXiv:2403.19345.
Zheng, H., Xu, K., Zhou, H., Wang, Y., & Su, G. (2024). Medication Recommendation System Based on Natural Language Processing for Patient Emotion Analysis. Academic Journal of Science and Technology, 10(1), 62-68.
Guo, L., Li, Z., Qian, K., Ding, W., & Chen, Z. (2024). Bank Credit Risk Early Warning Model Based on Machine Learning Decision Trees. Journal of Economic Theory and Business Management, 1(3), 24-30.
Xu, Z., Guo, L., Zhou, S., Song, R., & Niu, K. (2024). Enterprise Supply Chain Risk Management and Decision Support Driven by Large Language Models. Applied Science and Engineering Journal for Advanced Research, 3(4), 1-7.
Song, R., Wang, Z., Guo, L., Zhao, F., & Xu, Z. (2024). Deep Belief Networks (DBN) for Financial Time Series Analysis and Market Trends Prediction.World Journal of Innovative Medical Technologies, 5(3), 27-34.
Zheng, H.; Wu, J.; Song, R.; Guo, L.; Xu, Z. Predicting Financial Enterprise Stocks and Economic Data Trends Using Machine Learning Time Series Analysis. Applied and Computational Engineering 2024, 87, 26–32,
Guo, L.; Song, R.; Wu, J.; Xu, Z.; Zhao, F. Integrating a Machine Learning-Driven Fraud Detection System Based on a Risk Management Framework. Preprints 2024, 2024061756.
Feng, Y., Qi, Y., Li, H., Wang, X., & Tian, J. (2024, July 11). Leveraging federated learning and edge computing for recommendation systems within cloud computing networks. In Proceedings of the Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024) (Vol. 13210, pp. 279-287). SPIE.
Xu, K., Zheng, H., Zhan, X., Zhou, S., & Niu, K. (2024). Evaluation and Optimization of Intelligent Recommendation System Performance with Cloud Resource Automation Compatibility.
Li, H., Wang, X., Feng, Y., Qi, Y., & Tian, J. (2024). Driving Intelligent IoT Monitoring and Control through Cloud Computing and Machine Learning. arXiv preprint arXiv:2403.18100.

Downloads
Published
How to Cite
Issue
Section
ARK
License
Copyright (c) 2024 The author retains copyright and grants the journal the right of first publication.

This work is licensed under a Creative Commons Attribution 4.0 International License.