Enhancing Small Object Detection in Remote Sensing Images Using Mixed Local Channel Attention with YOLOv8

Authors

  • Hao Wang Belarusian State University
  • Sergey Ablameyko Belarusian State University

DOI:

https://doi.org/10.5281/zenodo.10986298

References:

8

Keywords:

YOLO, Small Object Detection, Mixed Local Channel Attention, MLCA

Abstract

Small object detection is very popular in computer vision, and the attention mechanism can automatically learn and selectively focus on important information in the input, improving the performance and generalization ability of the model. This paper proposes a new algorithm based on combination of YOLOv8 and Mixed Local Channel Attention (MLCA) to detect small objects. The results show that YOLOv8 using Mixed Local Channel Attention performs better than using other attention mechanisms and the original YOLOv8.

Author Biographies

Hao Wang, Belarusian State University

Dept. of Mechanics and Mathematics Belarusian State University, Minsk, Belarus ahcenewang@gmail.com.

Sergey Ablameyko, Belarusian State University

Dept. of Mechanics and Mathematics Belarusian State University, Minsk, Belarus ablameyko@bsu.by.

References

T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context.” arXiv, Feb. 20, 2015. Accessed: Apr. 15, 2024. [Online]. Available: http://arxiv.org/abs/1405.0312

L. Zhu, X. Wang, Z. Ke, W. Zhang, and R. Lau, “BiFormer: Vision Transformer with Bi-Level Routing Attention.” arXiv, Mar. 15, 2023. Accessed: Apr. 15, 2024. [Online]. Available: http://arxiv.org/abs/2303.08810

D. Ouyang et al., “Efficient Multi-Scale Attention Module with Cross-Spatial Learning,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece: IEEE, Jun. 2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10096516.

Q. Fan, H. Huang, J. Guan, and R. He, “Rethinking Local Perception in Lightweight Vision Transformer.” arXiv, Jun. 01, 2023. Accessed: Apr. 15, 2024. [Online]. Available: http://arxiv.org/abs/2303.17803

Y. Li, Q. Hou, Z. Zheng, M.-M. Cheng, J. Yang, and X. Li, “Large Selective Kernel Network for Remote Sensing Object Detection.” arXiv, Mar. 19, 2023. Accessed: Apr. 15, 2024. [Online]. Available: http://arxiv.org/abs/2303.09030

D. Wan, R. Lu, S. Shen, T. Xu, X. Lang, Z. Ren. (2023). Mixed local channel attention for object detection. Engineering Applications of Artificial Intelligence, 123, 106442, https://doi.org/10.1016/j.engappai.2023.106442.

G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8.” 2023. [Online]. Available: https://github.com/ultralytics/ultralytics

J. Ding et al., “Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021, doi: 10.1109/TPAMI.2021.3117983.

	Enhancing Small Object Detection in Remote Sensing Images Using Mixed Local Channel Attention with YOLOv8

Downloads

Published

2024-04-27

How to Cite

Wang, H., & Ablameyko, S. (2024). Enhancing Small Object Detection in Remote Sensing Images Using Mixed Local Channel Attention with YOLOv8. Journal of Computer Technology and Applied Mathematics, 1(1), 40–45. https://doi.org/10.5281/zenodo.10986298

Issue

Section

Articles