Enhancing Small Object Detection in Remote Sensing Images Using Mixed Local Channel Attention with YOLOv8
DOI:
https://doi.org/10.5281/zenodo.10986298References:
8Keywords:
YOLO, Small Object Detection, Mixed Local Channel Attention, MLCAAbstract
Small object detection is very popular in computer vision, and the attention mechanism can automatically learn and selectively focus on important information in the input, improving the performance and generalization ability of the model. This paper proposes a new algorithm based on combination of YOLOv8 and Mixed Local Channel Attention (MLCA) to detect small objects. The results show that YOLOv8 using Mixed Local Channel Attention performs better than using other attention mechanisms and the original YOLOv8.
References
T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context.” arXiv, Feb. 20, 2015. Accessed: Apr. 15, 2024. [Online]. Available: http://arxiv.org/abs/1405.0312
L. Zhu, X. Wang, Z. Ke, W. Zhang, and R. Lau, “BiFormer: Vision Transformer with Bi-Level Routing Attention.” arXiv, Mar. 15, 2023. Accessed: Apr. 15, 2024. [Online]. Available: http://arxiv.org/abs/2303.08810
D. Ouyang et al., “Efficient Multi-Scale Attention Module with Cross-Spatial Learning,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece: IEEE, Jun. 2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10096516.
Q. Fan, H. Huang, J. Guan, and R. He, “Rethinking Local Perception in Lightweight Vision Transformer.” arXiv, Jun. 01, 2023. Accessed: Apr. 15, 2024. [Online]. Available: http://arxiv.org/abs/2303.17803
Y. Li, Q. Hou, Z. Zheng, M.-M. Cheng, J. Yang, and X. Li, “Large Selective Kernel Network for Remote Sensing Object Detection.” arXiv, Mar. 19, 2023. Accessed: Apr. 15, 2024. [Online]. Available: http://arxiv.org/abs/2303.09030
D. Wan, R. Lu, S. Shen, T. Xu, X. Lang, Z. Ren. (2023). Mixed local channel attention for object detection. Engineering Applications of Artificial Intelligence, 123, 106442, https://doi.org/10.1016/j.engappai.2023.106442.
G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8.” 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
J. Ding et al., “Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021, doi: 10.1109/TPAMI.2021.3117983.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Copyright reserved by the author.

This work is licensed under a Creative Commons Attribution 4.0 International License.