Comparison of Text Classification Algorithms based on Deep Learning

Authors

  • Ping Qu Maharishi International University
  • Beibei Zhang Xi'an Jiaotong University
  • Jiawei Wu Illinois Institute of Technology
  • Hao Yan Syracuse University

DOI:

https://doi.org/10.5281/zenodo.12601298

ARK:

https://n2t.net/ark:/40704/JCTAM.v1n2a05

PURL:

https://purl.archive.org/suas/JCTAM.v1n2a05

References:

49

Keywords:

Text Classification, Hyperbolic Space, Graph Attention Network, Deep Learning

Abstract

In the technical battlefield of text classification, extracting key features and solving the sparsity problem play a decisive role in improving the performance of classification results. Euclidean geometric models often distort the processed vectors because they are difficult to deal with complex data structures. This exploration uses hyperbolic space with huge storage potential and hierarchical structure, and proposes an innovative hyperbolic graph-based short text classification technology - L-HGAT, aiming to improve the efficiency of processing concise information. This method combines two technologies, hyperbolic geometry and attention network, to optimize the representation of text through in-depth interaction between labels and text features. The research results significantly show that L-HGAT not only has high accuracy and excellent efficiency in many benchmark data sets, but also effectively integrates label information, significantly enhancing the model's ability to capture local features. This discussion brings an innovative perspective to processing hierarchical information and demonstrates the effectiveness of hyperbolic geometry in text classification challenges.

Author Biographies

Ping Qu, Maharishi International University

Computer Science, Maharishi International University, Fairfield, IA, USA.

Beibei Zhang, Xi'an Jiaotong University

Software Engineering, Xi'an Jiaotong University, Xi'an, China.

Jiawei Wu, Illinois Institute of Technology

Engineering in Artificial Intelligence for Computer Vision and Control, Illinois Institute of Technology, Chicago, IL, USA.

Hao Yan, Syracuse University

Engineering and Computer Science, Syracuse University, Syracuse, NY, USA.

References

Yan, H., Xiao, J., Zhang, B., Yang, L., & Qu, P. (2024). The Application of Natural Language Processing Technology in the Era of Big Data. Journal of Industrial Engineering and Applied Science, 2(3), 20-27.

Yan, H., Xiao, J., Zhang, B., Yang, L., & Qu, P. (2024). The Application of Natural Language Processing Technology in the Era of Big Data. Journal of Industrial Engineering and Applied Science, 2(3), 20-27.

Zhang, B., Xiao, J., Yan, H., Yang, L., & Qu, P. (2024). Review of NLP Applications in the Field of Text Sentiment Analysis. Journal of Industrial Engineering and Applied Science, 2(3), 28-34.

Zhang, B., Xiao, J., Yan, H., Yang, L., & Qu, P. (2024). Review of NLP Applications in the Field of Text Sentiment Analysis. Journal of Industrial Engineering and Applied Science, 2(3), 28-34.

Liu, T., Xu, C., Qiao, Y., Jiang, C., & Yu, J. (2024). Particle filter slam for vehicle localization. arXiv preprint arXiv:2402.07429.

Li, K., Xirui, P., Song, J., Hong, B., & Wang, J. (2024). The application of augmented reality (ar) in remote work and education. arXiv preprint arXiv:2404.10579.

Zhang, Y., Gui, K., Zhu, M., Hao, Y., & Sun, H. (2024). Unlocking personalized anime recommendations: Langchain and llm at the forefront. Journal of Industrial Engineering and Applied Science, 2(2), 46-53.

Sun, Y., Cui, Y., Hu, J., & Jia, W. (2018). Relation classification using coarse and fine-grained networks with SDP supervised key words selection. In Knowledge Science, Engineering and Management: 11th International Conference, KSEM 2018, Changchun, China, August 17–19, 2018, Proceedings, Part I 11 (pp. 514-522). Springer International Publishing.

Liu, T., Xu, C., Qiao, Y., Jiang, C., & Chen, W. (2024). News recommendation with attention mechanism. arXiv preprint arXiv:2402.07422.

Xiong, J., Feng, M., Wang, X., Jiang, C., Zhang, N., & Zhao, Z. (2024). Decoding sentiments: Enhancing covid-19 tweet analysis through bert-rcnn fusion. Journal of Theory and Practice of Engineering Science, 4(01), 86-93.

Zhao, Z., Zhang, N., Xiong, J., Feng, M., Jiang, C., & Wang, X. (2024). Enhancing E-commerce Recommendations: Unveiling Insights from Customer Reviews with BERTFusionDNN. Journal of Theory and Practice of Engineering Science, 4(02), 38-44.

Peng, Q., Ding, Z., Lyu, L., Sun, L., & Chen, C. (2022). RAIN: regularization on input and network for black-box domain adaptation. arXiv preprint arXiv:2208.10531.

Peng, Q. (2022). Multi-source and Source-Private Cross-Domain Learning for Visual Recognition (Master's thesis, Purdue University).

Zhang, N., Xiong, J., Zhao, Z., Feng, M., Wang, X., Qiao, Y., & Jiang, C. (2024). Dose My Opinion Count? A CNN-LSTM Approach for Sentiment Analysis of Indian General Elections. Journal of Theory and Practice of Engineering Science, 4(05), 40-50.

Jin, J., Ni, F., Dai, S., Li, K., & Hong, B. (2024). Enhancing federated semi-supervised learning with out-of-distribution filtering amidst class mismatches. Journal of Computer Technology and Applied Mathematics, 1(1), 100-108.

Wang, X., Qiao, Y., Xiong, J., Zhao, Z., Zhang, N., Feng, M., & Jiang, C. (2024). Advanced network intrusion detection with tabtransformer. Journal of Theory and Practice of Engineering Science, 4(03), 191-198.

Liu, T., Cai, Q., Xu, C., Zhou, Z., Ni, F., Qiao, Y., & Yang, T. (2024). Rumor Detection with a novel graph neural network approach. arXiv preprint arXiv:2403.16206.

Dai, S., Li, K., Luo, Z., Zhao, P., Hong, B., Zhu, A., & Liu, J. (2024). AI-based NLP section discusses the application and effect of bag-of-words models and TF-IDF in NLP tasks. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 5(1), 13-21.

Zhibin, Z. O. U., Liping, S. O. N. G., & Xuan, C. (2019). Labeled box-particle CPHD filter for multiple extended targets tracking. Journal of Systems Engineering and Electronics, 30(1), 57-67.

Zou, Z., Careem, M., Dutta, A., & Thawdar, N. (2022, May). Unified characterization and precoding for non-stationary channels. In ICC 2022-IEEE International Conference on Communications (pp. 5140-5146). IEEE.

Snyder, J., Goldstein, K. M., Gordon, A., Jacobs, M., Nugent, S., Magnante, A. T., ... & Gierisch, J. (2023). Psychiatric Conditions and Symptoms and Toxic Exposures Incurred During Military Service: An Evidence Map.

Liu, T., Cai, Q., Xu, C., Zhou, Z., Xiong, J., Qiao, Y., & Yang, T. (2024). Image Captioning in news report scenario. arXiv preprint arXiv:2403.16209.

Zhu, A., Li, K., Wu, T., Zhao, P., Zhou, W., & Hong, B. (2024). Cross-task multi-branch vision transformer for facial expression and mask wearing classification. arXiv preprint arXiv:2404.14606.

Wang, J., Wang, J., Dai, S., Yu, J., & Li, K. (2024). Research on emotionally intelligent dialogue generation based on automatic dialogue system. arXiv preprint arXiv:2404.11447.

Yao, J., Li, C., Sun, K., Cai, Y., Li, H., Ouyang, W., & Li, H. (2023, October). Ndc-scene: Boost monocular 3d semantic scene completion in normalized device coordinates space. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV) (pp. 9421-9431). IEEE Computer Society.

Yao, J., Wu, T., & Zhang, X. (2023). Improving depth gradient continuity in transformers: A comparative study on monocular depth estimation with cnn. arXiv preprint arXiv:2308.08333.

Zhu, A., Liu, J., Li, K., Dai, S., Hong, B., Zhao, P., & Wei, C. (2024). Exploiting Diffusion Prior for Out-of-Distribution Detection. arXiv preprint arXiv:2406.11105.

Yao, J., Pan, X., Wu, T., & Zhang, X. (2024, April). Building lane-level maps from aerial images. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3890-3894). IEEE.

Peng, Q., Zheng, C., & Chen, C. (2023). Source-free domain adaptive human pose estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4826-4836).

Su, J., Jiang, C., Jin, X., Qiao, Y., Xiao, T., Ma, H., ... & Lin, J. (2024). Large language models for forecasting and anomaly detection: A systematic literature review. arXiv preprint arXiv:2402.10350.

Peng, Q., Zheng, C., & Chen, C. (2024). A Dual-Augmentor Framework for Domain Generalization in 3D Human Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2240-2249).

Cao, Y., Yang, L., Wei, C., & Wang, H. (2023, November). Financial Text Sentiment Classification Based on Baichuan2 Instruction Finetuning Model. In 2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC) (pp. 403-406). IEEE.

Zhao, P., Li, K., Hong, B., Zhu, A., Liu, J., & Dai, S. (2024). Task allocation planning based on hierarchical task network for national economic mobilization. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 5(1), 22-31.

Snyder, J., Goldstein, K. M., Gordon, A., Jacobs, M., Nugent, S., Magnante, A. T., ... & Gierisch, J. (2023). Psychiatric Conditions and Symptoms and Toxic Exposures Incurred During Military Service: An Evidence Map.

Ni, F., Zang, H., & Qiao, Y. (2024, January). Smartfix: Leveraging machine learning for proactive equipment maintenance in industry 4.0. In The 2nd International scientific and practical conference “Innovations in education: prospects and challenges of today”(January 16-19, 2024), Sofia, Bulgaria, International Science Group (p. 313).

Liu, S., Wu, K., Jiang, C., Huang, B., & Ma, D. (2023). Financial time-series forecasting: Towards synergizing performance and interpretability within a hybrid machine learning approach. arXiv preprint arXiv:2401.00534.

Zhang, Y., Zhu, M., Gong, Y., & Ding, R. (2023). Optimizing science question ranking through model and retrieval-augmented generation. International Journal of Computer Science and Information Technology, 1(1), 124-130.

Li, H., Xu, F., & Lin, Z. (2023). ET-DM: Text to image via diffusion model with efficient Transformer. Displays, 80, 102568.

Zhu, M., Zhang, Y., Gong, Y., Xing, K., Yan, X., & Song, J. (2024). Ensemble methodology: Innovations in credit default prediction using lightgbm, xgboost, and localensemble. arXiv preprint arXiv:2402.17979.

Cao, Y., Yang, L., Wei, C., & Wang, H. (2023, November). Financial Text Sentiment Classification Based on Baichuan2 Instruction Finetuning Model. In 2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC) (pp. 403-406). IEEE.

Zhang, Y., Zhu, M., Gui, K., Yu, J., Hao, Y., & Sun, H. (2024). Development and application of a monte carlo tree search algorithm for simulating da vinci code game strategies. arXiv preprint arXiv:2403.10720.

Song, J., Liu, H., Li, K., Tian, J., & Mo, Y. (2024). A comprehensive evaluation and comparison of enhanced learning methods. Academic Journal of Science and Technology, 10(3), 167-171.

Zhang, Y., Gong, Y., Cui, D., Li, X., & Shen, X. (2024). Deepgi: An automated approach for gastrointestinal tract segmentation in mri scans. arXiv preprint arXiv:2401.15354.

Hong, B., Zhao, P., Liu, J., Zhu, A., Dai, S., & Li, K. (2024). The application of artificial intelligence technology in assembly techniques within the industrial sector. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 5(1), 1-12.

Yi, X., & Qiao, Y. (2024). GPU-Based Parallel Computing Methods for Medical Photoacoustic Image Reconstruction. arXiv preprint arXiv:2404.10928.

Zou, Z., Careem, M., Dutta, A., & Thawdar, N. (2023). Joint spatio-temporal precoding for practical non-stationary wireless channels. IEEE Transactions on Communications, 71(4), 2396-2409.

Zang, H. (2024). Precision calibration of industrial 3d scanners: An ai-enhanced approach for improved measurement accuracy. Global Academic Frontiers, 2(1), 27-37.

Pinyoanuntapong, E., Ali, A., Jakkala, K., Wang, P., Lee, M., Peng, Q., ... & Sun, Z. (2023, September). Gaitsada: Self-aligned domain adaptation for mmwave gait recognition. In 2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS) (pp. 218-226). IEEE.

Feng, M., Wang, X., Zhao, Z., Jiang, C., Xiong, J., & Zhang, N. (2024). Enhanced Heart Attack Prediction Using eXtreme Gradient Boosting. Journal of Theory and Practice of Engineering Science, 4(04), 9-16.

Downloads

Published

2024-07-01

How to Cite

Qu, P., Zhang, B., Wu, J., & Yan, H. (2024). Comparison of Text Classification Algorithms based on Deep Learning. Journal of Computer Technology and Applied Mathematics, 1(2), 35–42. https://doi.org/10.5281/zenodo.12601298

Issue

Section

Articles

ARK

PURL