Utilizing Deep Learning to Detect Fraud in Financial Transactions and Tax Reporting
DOI:
https://doi.org/10.5281/zenodo.13294459ARK:
https://n2t.net/ark:/40704/JETBM.v1n4a08Keywords:
Credit Card Fraud Detection, Deep Learning, Convolutional Neural Networks, Deep Feature SynthesisAbstract
This study investigates the application of deep learning techniques and automated feature engineering in credit card fraud detection. The research employs a Convolutional Neural Network (CNN) model integrated with Deep Feature Synthesis (DFS) to enhance the accuracy and efficiency of fraud detection systems. A comprehensive dataset of credit card transactions is utilized, comprising 2,453,620 records with 1,432 fraudulent cases. The methodology involves extensive data preprocessing, including class imbalance handling and feature encoding. The DFS algorithm generates 118 new features from the original 25, capturing complex relationships within the data. The CNN model's performance is compared against traditional machine learning algorithms such as Logistic Regression, Random Forest, Support Vector Machine, and XGBoost. Results demonstrate that the CNN model with DFS-generated features significantly outperforms other approaches, achieving an accuracy of 91%, precision of 92%, recall of 90%, and an F1-score of 0.91. The study highlights the synergistic effect of combining deep learning architectures with advanced feature engineering techniques in addressing the challenges of credit card fraud detection. The findings contribute to developing more robust and adaptable fraud detection systems, potentially reducing financial losses and enhancing security in electronic transactions. Future research directions include exploring model interpretability, real-time application, and extension to multi-class fraud detection scenarios.
References
Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., & Ahmed, M. (2022). Credit Card Fraud Detection Using State-of-the-art Machine Learning and Deep Learning Algorithms. IEEE Access, 10, 39700-39715.
Anusha, P., Bharath, S., Rajendran, N., Durga Devi, S., & Saravanakumar, S. (2023). Experimental Evaluation of Smart Credit Card Fraud Detection System using Intelligent Learning Scheme. In 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES) (pp. 1–6). IEEE.
Xu, K., Zheng, H., Zhan, X., Zhou, S., & Niu, K. (2024). Evaluation and Optimization of Intelligent Recommendation System Performance with Cloud Resource Automation Compatibility.
Zheng, H., Xu, K., Zhou, H., Wang, Y., & Su, G. (2024). Medication Recommendation System Based on Natural Language Processing for Patient Emotion Analysis. Academic Journal of Science and Technology, 10(1), 62-68.
Xu, K., Zhou, H., Zheng, H., Zhu, M., & Xin, Q. (2024). Intelligent Classification and Personalized Recommendation of E-commerce Products Based on Machine Learning. arXiv preprint arXiv:2403.19345.
Li, H., Wang, S. X., Shang, F., Niu, K., & Song, R. (2024). Applications of Large Language Models in Cloud Computing: An Empirical Study Using Real-world Data. International Journal of Innovative Research in Computer Science & Technology, 12(4), 59-69.
Ping, G., Wang, S. X., Zhao, F., Wang, Z., & Zhang, X. (2024). Blockchain-Based Reverse Logistics Data Tracking: An Innovative Approach to Enhance E-Waste Recycling Efficiency.
Xu, H., Niu, K., Lu, T., & Li, S. (2024). Leveraging artificial intelligence for enhanced risk management in financial services: Current applications and prospects. Engineering Science & Technology Journal, 5(8), 2402-2426.
Shi, Y., Shang, F., Xu, Z., & Zhou, S. (2024). Emotion-Driven Deep Learning Recommendation Systems: Mining Preferences from User Reviews and Predicting Scores. Journal of Artificial Intelligence and Development, 3(1), 40–46.
Wang, Shikai, Kangming Xu, and Zhipeng Ling. "Deep Learning-Based Chip Power Prediction and Optimization: An Intelligent EDA Approach." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 77-87.
Zhan, X., Shi, C., Li, L., Xu, K., & Zheng, H. (2024). Aspect category sentiment analysis based on multiple attention mechanisms and pre-trained models. Applied and Computational Engineering, pp. 71, 21–26.
Liu, B., Zhao, X., Hu, H., Lin, Q., & Huang, J. (2023). Detection of Esophageal Cancer Lesions Based on CBAM Faster R-CNN. Journal of Theory and Practice of Engineering Science, 3(12), 36–42.
Liu, B., Yu, L., Che, C., Lin, Q., Hu, H., & Zhao, X. (2024). Integration and performance analysis of artificial intelligence and computer vision based on deep learning algorithms. Applied and Computational Engineering, pp. 64, 36–41.
Liu, B. (2023). Based on intelligent advertising recommendations and abnormal advertising monitoring systems in the field of machine learning. International Journal of Computer Science and Information Technology, 1(1), 17–23.
Wu, B., Xu, J., Zhang, Y., Liu, B., Gong, Y., & Huang, J. (2024). Integration of computer networks and artificial neural networks for an AI-based network operator. arXiv preprint arXiv:2407.01541.
Liang, P., Song, B., Zhan, X., Chen, Z., & Yuan, J. (2024). Automating the training and deployment of models in MLOps by integrating systems with machine learning. Applied and Computational Engineering, 67, 1-7.
Wu, B., Gong, Y., Zheng, H., Zhang, Y., Huang, J., & Xu, J. (2024). Enterprise cloud resource optimization and management based on cloud operations. Applied and Computational Engineering, pp. 67, 8–14.
Guo, L., Li, Z., Qian, K., Ding, W., & Chen, Z. (2024). Bank Credit Risk Early Warning Model Based on Machine Learning Decision Trees. Journal of Economic Theory and Business Management, 1(3), 24–30.
Xu, Z., Guo, L., Zhou, S., Song, R., & Niu, K. (2024). Enterprise Supply Chain Risk Management and Decision Support Driven by Large Language Models. Applied Science and Engineering Journal for Advanced Research, 3(4), 1–7.
Yang, T., Xin, Q., Zhan, X., Zhuang, S., & Li, H. (2024). ENHANCING FINANCIAL SERVICES THROUGH BIG DATA AND AI-DRIVEN CUSTOMER INSIGHTS AND RISK ANALYSIS. Journal of Knowledge Learning and Science Technology ISSN: 2959–6386 (online), 3(3), 53–62.
Zhao, F., Li, H., Niu, K., Shi, J., & Song, R. (2024, July 8). Application of deep learning-based intrusion detection system (IDS) in network anomaly traffic detection. Preprints.
Gong, Y., Liu, H., Li, L., Tian, J., & Li, H. (2024, February 28). Deep learning-based medical image registration algorithm: Enhancing accuracy with dense connections and channel attention mechanisms. Journal of Theory and Practice of Engineering Science, 4(02), 1–7.
Zhan, T., Shi, C., Shi, Y., Li, H., & Lin, Y. (2024). Optimization Techniques for Sentiment Analysis Based on LLM (GPT-3)—arXiv preprint arXiv:2405.09770.
Yang, P., Chen, Z., Su, G., Lei, H., & Wang, B. (2024). Enhancing traffic flow monitoring with machine learning integration on cloud data warehousing. Applied and Computational Engineering, 67, 15-21.
Jiang, W., Qian, K., Fan, C., Ding, W., & Li, Z. (2024). Applications of generative AI-based financial robot advisors as investment consultants. Applied and Computational Engineering, pp. 67, 28–33.
Fan, C., Ding, W., Qian, K., Tan, H., & Li, Z. (2024). Cueing Flight Object Trajectory and Safety Prediction Based on SLAM Technology. Journal of Theory and Practice of Engineering Science, 4(05), 1–8.
Jiang, W., Yang, T., Li, A., Lin, Y., & Bai, X. (2024). The Application of Generative Artificial Intelligence in Virtual Financial Advisor and Capital Market Analysis. Academic Journal of Sociology and Management, 2(3), 40-46.
Li A, Zhuang S, Yang T, Lu W, Xu J. Optimization of logistics cargo tracking and transportation efficiency based on data science deep learning models. Applied and Computational Engineering. 2024 July 8;69:71-7.
Xu, J., Yang, T., Zhuang, S., Li, H. and Lu, W., 2024. AI-based financial transaction monitoring and fraud prevention with behavior prediction. I Applied and Computational Engineering, 77, pp.218-224.
Ling, Z., Xin, Q., Lin, Y., Su, G. and Shui, Z., 2024. Optimization of autonomous driving image detection based on RFAConv and triplet attention and applied and Computational Engineering, 77, pp.210-217.
He, Z., Shen, X., Zhou, Y., & Wang, Y. (2024, January). Application of K-means clustering based on artificial intelligence in gene statistics of biological information engineering. In Proceedings of the 2024 4th International Conference on Bioinformatics and Intelligent Computing (pp. 468-473).
Gong, Y., Zhu, M., Huo, S., Xiang, Y., & Yu, H. (2024, March). Utilizing Deep Learning for Enhancing Network Resilience in Finance. In 2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE) (pp. 987–991). IEEE.
Yang, T., Li, A., Xu, J., Su, G. and Wang, J., 2024. Deep learning model-driven financial risk prediction and analysis. I Applied and Computational Engineering, 77, pp.196-202.
Liu, B., Cai, G., Ling, Z., Qian, J., & Zhang, Q. (2024). Precise Positioning and Prediction System for Autonomous Driving Based on Generative Artificial Intelligence. Applied and Computational Engineering, pp. 64, 42–49.
Cui, Z., Lin, L., Zong, Y., Chen, Y., & Wang, S. (2024). Precision Gene Editing Using Deep Learning: A Case Study of the CRISPR-Cas9 Editor. Applied and Computational Engineering, 64, 134-141.
Zhang, X., (2024). Machine learning insights into digital payment behaviors and fraud prediction. Applied and Computational Engineering, 67, pp.61–67.
Zhang, Y., Xie, H., Zhuang, S., & Zhan, X. (2024). Image Processing and Optimization Using Deep Learning-Based Generative Adversarial Networks (GANs). Journal of Artificial Intelligence General Science (JAIGS) ISSN: 3006–4023, 5(1), 50–62.
Liu, Y., Xu, Y., & Song, R. (2024). Transforming User Experience (UX) through Artificial Intelligence (AI) in interactive media design. Engineering Science & Technology Journal, 5(7), 2273-2283.
Zhan, X., Ling, Z., Xu, Z., Guo, L., & Zhuang, S. (2024). Driving Efficiency and Risk Management in Finance through AI and RPA. Unique Endeavor in Business & Social Sciences, 3(1), 189–197.
Feng, Y., Qi, Y., Li, H., Wang, X., & Tian, J. (2024, July 11). Leveraging federated learning and edge computing for recommendation systems within cloud computing networks. In Proceedings of the Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024) (Vol. 13210, pp. 279–287). SPIE.
Downloads
Published
How to Cite
Issue
Section
ARK
License
Copyright (c) 2024 The author retains copyright and grants the journal the right of first publication.
This work is licensed under a Creative Commons Attribution 4.0 International License.