AI-Driven Intelligent Financial Analysis: Enhancing Accuracy and Efficiency in Financial Decision-Making
DOI:
https://doi.org/10.5281/zenodo.13926298ARK:
https://n2t.net/ark:/40704/JETBM.v1n5a01Disciplines:
FinancialSubjects:
Financial AnalysisReferences:
41Keywords:
Artificial Intelligence, Financial Analysis, Machine Learning, Quantum ComputingAbstract
This study explores the impact of the evolution of AI-driven financial intelligence on improving accuracy and efficiency in economic decision-making. By leveraging advanced machine learning algorithms, deep learning models, and hybrid approaches, we assess AI finance's current state and future potential. Our research examines the integration of AI with new technologies such as blockchain and quantum computing, demonstrating significant improvements in risk assessment, data management, fraud detection, and real-time transaction analysis. We comprehensively review various AI methods, including fuzzy-ML hybrid models for risk assessment, quantum-enhanced algorithms for portfolio optimisation, and blockchain-integrated systems for financial security. Our findings show that AI-driven systems consistently outperform traditional systems across multiple performance metrics, including accuracy, speed, and persistence. Good luck coming back.
The study also addresses key challenges in implementing AI-powered financial analytics, including data quality, model interpretation, and compliance. We propose a framework for ethical AI deployment in finance and discuss the potential impact on business and entrepreneurship. Our research contributes to the growing knowledge about AI in finance and provides insights for practitioners, policymakers, and researchers. As evidence, this paper shows the potential of AI to transform financial analysis and decision-making when vital. The importance of the new role. And regulatory change in shaping the future of AI-driven finance.
References
Zhang, Y. (2023, December). Research on Intelligent Analysis and Processing System of Financial Big Data Based on Machine Learning. In 2023 5th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI) (pp. 189-194). IEEE.
Kaur, T., Rani, K., Thakur, P., & Talwandi, N. S. (2024, May). Enhanced Decision Support System for Financial Risk Assessment Using Hybrid Fuzzy Logic and Machine Learning. In 2024 International Conference on Computational Intelligence and Computing Applications (ICCICA) (Vol. 1, pp. 97-102). IEEE.
Bhasin, N. K., Kadyan, S., Santosh, K., Ramya, H. P., Changala, R., & Bala, B. K. (2024, March). Enhancing Quantum Machine Learning Algorithms for Optimized Financial Portfolio Management. In 2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) (pp. 1-7). IEEE.
Zhang, Y., Shen, Q., Guo, J., & Jia, Y. (2022, September). Portfolio Trading of Financial Products Based on Machine Learning. In 2022 International Conference on Machine Learning and Cybernetics (ICMLC) (pp. 72-79). IEEE.
Chaturvedi, K., Goel, P. K., Bansal, Y. K., Kaushik, T., Sharma, A., & Srivel, R. (2024, April). Fin Safe-Empowering Financial Security through the Synergy of Machine Learning and Blockchain. In 2024 10th International Conference on Communication and Signal Processing (ICCSP) (pp. 988-992). IEEE.
Shen, Q., Wen, X., Xia, S., Zhou, S., & Zhang, H. (2024). AI-Based Analysis and Prediction of Synergistic Development Trends in US Photovoltaic and Energy Storage Systems. International Journal of Innovative Research in Computer Science & Technology, 12(5), 36-46.
Li, H., Zhou, S., Yuan, B., & Zhang, M. (2024). OPTIMIZING INTELLIGENT EDGE COMPUTING RESOURCE SCHEDULING BASED ON FEDERATED LEARNING. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 235-260.
Pu, Y., Zhu, Y., Xu, H., Wang, Z., & Wei, M. (2024). LSTM-Based Financial Statement Fraud Prediction Model for Listed Companies. Academic Journal of Sociology and Management, 2(5), 20-31.
Liu, Y., Tan, H., Cao, G., & Xu, Y. (2024). Enhancing User Engagement through Adaptive UI/UX Design: A Study on Personalized Mobile App Interfaces.
Huang, D., Yang, M., Wen, X., Xia, S., & Yuan, B. (2024). AI-Driven Drug Discovery: Accelerating the Development of Novel Therapeutics in Biopharmaceuticals. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 206-224.
Xu, H., Li, S., Niu, K., & Ping, G. (2024). Utilizing Deep Learning to Detect Fraud in Financial Transactions and Tax Reporting. Journal of Economic Theory and Business Management, 1(4), 61-71.
Wang, S., Zheng, H., Wen, X., & Fu, S. (2024). DISTRIBUTED HIGH-PERFORMANCE COMPUTING METHODS FOR ACCELERATING DEEP LEARNING TRAINING. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 108-126.
Lei, H., Wang, B., Shui, Z., Yang, P., & Liang, P. (2024). Automated Lane Change Behavior Prediction and Environmental Perception Based on SLAM Technology. arXiv preprint arXiv:2404.04492.
Wang, B., Zheng, H., Qian, K., Zhan, X., & Wang, J. (2024). Edge computing and AI-driven intelligent traffic monitoring and optimization. Applied and Computational Engineering, 77, 225-230.
Wang, Shikai, Kangming Xu, and Zhipeng Ling. "Deep Learning-Based Chip Power Prediction and Optimization: An Intelligent EDA Approach." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 77-87.
Xu, K., Zhou, H., Zheng, H., Zhu, M., & Xin, Q. (2024). Intelligent Classification and Personalized Recommendation of E-commerce Products Based on Machine Learning. arXiv preprint arXiv:2403.19345.
Xu, K., Zheng, H., Zhan, X., Zhou, S., & Niu, K. (2024). Evaluation and Optimization of Intelligent Recommendation System Performance with Cloud Resource Automation Compatibility.
Zheng, H., Xu, K., Zhou, H., Wang, Y., & Su, G. (2024). Medication Recommendation System Based on Natural Language Processing for Patient Emotion Analysis. Academic Journal of Science and Technology, 10(1), 62-68.
Zheng, H.; Wu, J.; Song, R.; Guo, L.; Xu, Z. Predicting Financial Enterprise Stocks and Economic Data Trends Using Machine Learning Time Series Analysis. Applied and Computational Engineering 2024, 87, 26–32,
Liang, P., Song, B., Zhan, X., Chen, Z., & Yuan, J. (2024). Automating the training and deployment of models in MLOps by integrating systems with machine learning. Applied and Computational Engineering, 67, 1-7.
Wu, B., Gong, Y., Zheng, H., Zhang, Y., Huang, J., & Xu, J. (2024). Enterprise cloud resource optimization and management based on cloud operations. Applied and Computational Engineering, 67, 8-14.
Liu, B., & Zhang, Y. (2023). Implementation of seamless assistance with Google Assistant leveraging cloud computing. Journal of Cloud Computing, 12(4), 1-15.
Zhang, M., Yuan, B., Li, H., & Xu, K. (2024). LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 5(1), 295-326.
Li, P., Hua, Y., Cao, Q., & Zhang, M. (2020, December). Improving the Restore Performance via Physical-Locality Middleware for Backup Systems. In Proceedings of the 21st International Middleware Conference (pp. 341-355).
Zhou, S., Yuan, B., Xu, K., Zhang, M., & Zheng, W. (2024). THE IMPACT OF PRICING SCHEMES ON CLOUD COMPUTING AND DISTRIBUTED SYSTEMS. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 193-205.
Shang, F., Zhao, F., Zhang, M., Sun, J., & Shi, J. (2024). Personalized Recommendation Systems Powered By Large Language Models: Integrating Semantic Understanding and User Preferences. International Journal of Innovative Research in Engineering and Management, 11(4), 39-49.
Sun, J., Wen, X., Ping, G., & Zhang, M. (2024). Application of News Analysis Based on Large Language Models in Supply Chain Risk Prediction. Journal of Computer Technology and Applied Mathematics, 1(3), 55-65.
Zhao, F., Zhang, M., Zhou, S., & Lou, Q. (2024). Detection of Network Security Traffic Anomalies Based on Machine Learning KNN Method. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 1(1), 209-218.
Feng, Y., Qi, Y., Li, H., Wang, X., & Tian, J. (2024, July 11). Leveraging federated learning and edge computing for recommendation systems within cloud computing networks. In Proceedings of the Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024) (Vol. 13210, pp. 279-287). SPIE.
Zhao, F.; Li, H.; Niu, K.; Shi, J.; Song, R. Application of Deep Learning-Based Intrusion Detection System (IDS) in Network Anomaly Traffic Detection. Preprints 2024, 2024070595.
Gong, Y., Liu, H., Li, L., Tian, J., & Li, H. (2024, February 28). Deep learning-based medical image registration algorithm: Enhancing accuracy with dense connections and channel attention mechanisms. Journal of Theory and Practice of Engineering Science, 4(02), 1-7.
Wang, S., Zheng, H., Wen, X., Xu, K., & Tan, H. (2024). Enhancing chip design verification through AI-powered bug detection in RTL code. Applied and Computational Engineering, 92, 27-33.
Yu, K., Bao, Q., Xu, H., Cao, G., & Xia, S. (2024). An Extreme Learning Machine Stock Price Prediction Algorithm Based on the Optimisation of the Crown Porcupine Optimisation Algorithm with an Adaptive Bandwidth Kernel Function Density Estimation Algorithm.
Li A, Zhuang S, Yang T, Lu W, Xu J. Optimization of logistics cargo tracking and transportation efficiency based on data science deep learning models. Applied and Computational Engineering. 2024 Jul 8;69:71-7.
Xu, J., Yang, T., Zhuang, S., Li, H. and Lu, W., 2024. AI-based financial transaction monitoring and fraud prevention with behaviour prediction. Applied and Computational Engineering, 77, pp.218-224.
Ling, Z., Xin, Q., Lin, Y., Su, G. and Shui, Z., 2024. Optimization of autonomous driving image detection based on RFAConv and triplet attention. Applied and Computational Engineering, 77, pp.210-217.
Zhang, X., 2024. Machine learning insights into digital payment behaviors and fraud prediction. Applied and Computational Engineering, 67, pp.61-67.
Zhang, X. (2024). Analyzing Financial Market Trends in Cryptocurrency and Stock Prices Using CNN-LSTM Models.
Xu, X., Xu, Z., Ling, Z., Jin, Z., & Du, S. (2024). Emerging Synergies Between Large Language Models and Machine Learning in Ecommerce Recommendations. arXiv preprint arXiv:2403.02760.
Zhu, Y., Yu, K., Wei, M., Pu, Y., & Wang, Z. (2024). AI-Enhanced Administrative Prosecutorial Supervision in Financial Big Data: New Concepts and Functions for the Digital Era. Social Science Journal for Advanced Research, 4(5), 40-54.
Wang, S., Zhu, Y., Lou, Q., & Wei, M. (2024). Utilizing Artificial Intelligence for Financial Risk Monitoring in Asset Management. Academic Journal of Sociology and Management, 2(5), 11-19.

Downloads
Published
How to Cite
Issue
Section
ARK
License
Copyright (c) 2024 The author retains copyright and grants the journal the right of first publication.

This work is licensed under a Creative Commons Attribution 4.0 International License.